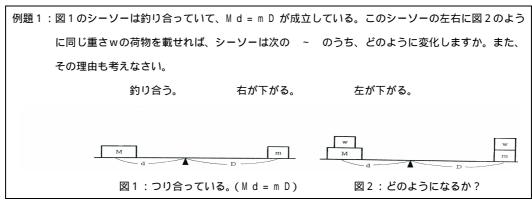
教具を利用した「不等式の証明」の導入授業

北海道真狩高等学校 教諭 髙 倉 亘

(Keywords: 操作的活動、数学モデル、大小比較、次元解析)


1 緒 言

数学の問題は身近な題材をもとに具体的なイメージで考えると容易に理解できる場合 が多い。実験等の視覚に訴える操作的活動を取り入れることは、視点を変えた理解(物 理的理解)やより深化した理解を生徒に対し期待できる。また、このような活動から数 学モデルを構築し、全く別の概念と考えられていた種々の問題との間に関連性が見出さ れることもある。本稿では、天秤と粘土を用いた簡単な実験を通して「不等式の証明」 に関する導入授業について提言する。「不等式の証明」は数学研究のうえででも重要な ものであるにもかかわらず、高校数学においては、その重要性や必然性を感じにくい教 材の1つになっているものと思われる。本稿で採りあげる内容は以前に勤務していた私 立高校において、平成7年度に行われた中学生向け体験入学の際に行った体験授業の内 容が原型となっている。その後、「不等式の証明」に関する導入授業の際には、本稿で 紹介する天秤と粘土を用いた授業を展開している。ここで、天秤を用いた授業は左右の モーメントの釣り合い条件を考慮しながら各モーメントの大小比較を行い、粘土を用い た授業では分割された粘土塊の体積と表面積との関係を例にあげ、次元解析について考 察する。この授業では実験結果をもとに数学モデルをつくりあげることで、その考察が 不等式の証明問題に帰着される1次、2次および3次の絶対不等式について身近な例を 採りあげる。生徒自身が問題を拡張して新たな予想を立て、それを確かめ証明すること ができたり、思いもよらない原理・法則との関係を見出すことができれば、思考の深化、 創造性の育成につながるものと期待しこの授業を組み立てた。なお、本稿は平成13年 度の公開授業(指導主事訪問)および道研 数学科教育(高等学校)研修講座1、平成1 4年度 第57回北数教札幌大会²⁾で発表した内容を集約したものである。

2 実践事例問題の例

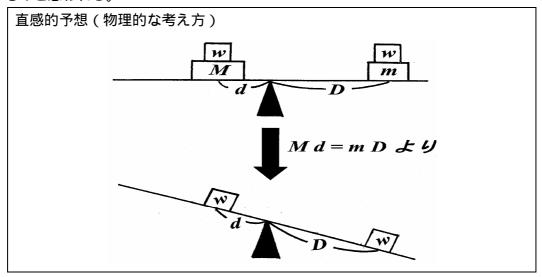
(1) 天秤を用いた一次不等式の証明

ほとんどの不等式にはその成立の背景があり、それらに触れることにより生徒の興味・関心を高めることが期待できる。天秤の釣り合いは、左回りおよび右回リモーメントの大小関係によって決定される。このことから、天秤の釣り合いに関する問題は長さに関する一次不等式の問題に帰着される。次の例題1に関しては自作の天秤による実験によって生徒に結果を予想させ、それを数学モデルとして不等式の証明問題に帰着させた。(補遺1および2を参照)

[仮定] M > 0, m > 0, w > 0, D > 0, d > 0, M > m, D > d, Md = mD[結論] $(M + w)d < (m + w)D \cdot \cdot \cdot ($ 予想)

[証明]

$$(m+w)D - (M+w)d$$


$$= mD + wD - Md - wd$$

$$= wD - wd$$

$$= w(D-d) > 0$$

$$\therefore (M+w)d < (m+w)D$$
よって、右が下がる。(が正しい) [終]

この例題に関しては、次の図の物理的な直感によって、直ちに結果は予想できる ものと思われる。

その他、天秤を利用した「不等式の証明」の問題に関しては次に挙げるような問題を採りあげるのも有効なものと考えられる。

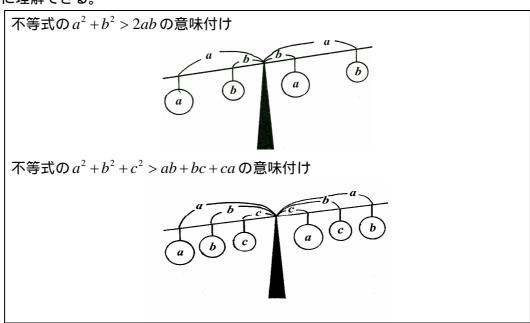
<例題1以外の天秤を利用した不等式の証明の問題例>

$$l < L$$
, $m < M$ ならば、 $ml + ML > mL + Ml$

[証明]

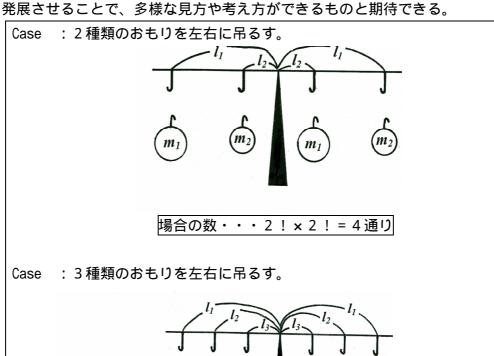
$$ml + ML - (mL + Ml) = M(L - l) - m(L - l) = (M - m)(L - l) > 0$$

 $\therefore ml + ML > mL + Ml$


[終]

(2)2数、3数の相加・相乗平均の関係式と簡単な数列の積和としての性質について

天秤は、身近な存在であり、実体験として理解しやすいものである。ここで、「同じ重さのおもりを 2 個ずつ用意し、支点から同距離にある点を左右に取り、これらのおもりを下げる。ただし、左右のおもりの個数および重さの合計は同じものとする。」を付けることで、つりあわない状態を不等式で表現することができれば、その規則性には面白いものがある。例えば、天秤の左右におもりを 2 個ずつ下げたときは、支点からの距離を $x_1 > x_2 > 0$ 、おもりの重さを $m_1 > m_2 > 0$ とすると、天秤が傾く様子は不等式 $x_1m_1 + x_2m_2 > x_1m_2 + x_2m_1$ で表すことができる。ここで、おもりの個数を増やし、天秤のつりあいの状況を不等式で考えると、簡単な数列の積和としての性質なども見えてくる。(補遺 3 および 4 を参照)


< 2数、3数の相加・相乗平均の関係式>

2数、3数の相加・相乗平均の関係式は次のように天秤を用いれば視覚的に即座に理解できる。

<簡単な数列の積和としての性質>

天秤とおもりを使用することで、天秤の傾く方向、つまり、不等式の不等号の向きを体験させ、不等式の性質の考察が進めやすくなるように配慮した。実験結果から数学モデルを作り、大小関係も生徒自身に予想させ、不等式の証明に対する興味・関心を高めるように配慮した。実験結果をまとめるものとしてワークシートを用意した。左右のおもりの下げ方を考えると、おもり2個の場合で4通り、おもり3個の場合で36通り考えられるが、この中には他と重複する場合や、つりあうことが明らかな場合、大小関係が定まらない場合もある。生徒自身がこのような点に気がつくように配慮した。また、証明した不等式の規則性を発見し、その不等式を発展させることで、多様な見方や考え方ができるものと期待できる。

ワークシートについて、Case の No.3 および No.2 の証明を次に示す。

< Case No.3 および No.2 の証明 >

[仮定]: 支点からの距離: $\ell_1 > \ell_2 > \ell_3$ 、おもりの重さ: $m_1 > m_2 > m_3$ (No.3 の証明)・・・単純に左辺と右辺との差を調べる。

[結論] : $m_1\ell_1 + m_2\ell_2 + m_3\ell_3 > m_2\ell_3 + m_3\ell_2 + m_1\ell_1$ ・・・No.3 の関係式 [証明]

$$(m_1\ell_1 + m_2\ell_2 + m_3\ell_3) - (m_2\ell_3 + m_3\ell_2 + m_1\ell_1)$$

$$= m_2(\ell_2 - \ell_3) - m_3(\ell_2 - \ell_3)$$

$$= (\ell_2 - \ell_3)(m_2 - m_3) > 0$$

したがって、

$$m_1\ell_1 + m_2\ell_2 + m_3\ell_3 \ge m_2\ell_3 + m_3\ell_2 + m_1\ell_1$$

[終]

(No.2の証明)・・・他の不等式を介在して、左辺と右辺との差を調べる。

[結論] : $m_1\ell_1 + m_2\ell_2 + m_3\ell_3 > m_1\ell_3 + m_3\ell_2 + m_2\ell_1$ ・・・No.2 の関係式 [証明]

(No.2の左辺) = (No.3の左辺)・・・ ここで、

(No.3 の右辺) (No.2 の右辺)

$$= (m_2 \ell_3 + m_3 \ell_2 + m_1 \ell_1) - (m_1 \ell_3 + m_3 \ell_2 + m_2 \ell_1)$$

= $\ell_1 (m_1 - m_2) - \ell_3 (m_1 - m_2)$

$$= (\ell_1 - \ell_3)(m_1 - m_2) > 0$$

よって、(No.3の右辺) > (No.2の右辺)・・・

、 および No.3 の証明より、 $m_1\ell_1+m_2\ell_2+m_3\ell_3>m_1\ell_3+m_3\ell_2+m_2\ell_1$ [終]

(3) 粘土を用いた二次・三次不等式の証明

次の例題2および演習は活性炭等の粉末の表面積がその体積に対し、非常に大きな値になることをヒントに作成したものである。表面積や体積を扱うことで長さに関する二次および三次不等式の問題に帰着される。例題2に関しては粘土の塊で球を作り、それを生徒の目の前で2分割、3分割・・・と示すことで表面積が次第に増加することを実験的に示し、それを数式化して不等式の証明問題に帰着させた。

例題 2 : 粘土でできた半径 c の球の表面積を S_c とする。この球を 2 つに分割し、半径 a および半径 b の球を作り、それぞれの表面積を S_a 、 S_b とする。 S_a 、 S_b 、 S_c の間には \sim のうち、どのような関係が成立すると考えられますか。また、その理由も考えなさい。

$$S_a + S_b = S_c$$
 $S_a + S_b > S_c$ $S_a + S_b < S_c$

[仮定] a > 0, b > 0, c > 0, c > a, c > b, $c^3 = a^3 + b^3$

[結論]
$$a^2 + b^2 > c^2 \cdot \cdot \cdot ($$
 予想)

[証明]

$$a^{2} + b^{2} - c^{2}$$

$$= a^{2} + b^{2} - \frac{a^{3} + b^{3}}{c}$$

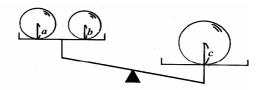
$$= \frac{a^{2}(c - a) + b^{2}(c - b)}{c} > 0$$

$$\therefore a^{2} + b^{2} > c^{2}$$
よって、S_a + S_b > S_c が成立する。(が正しい) [終]

例題2を一般化すると次のようになる。

<例題2の一般化>

$$R > 0, r_i > 0$$
 $(i = 1, 2, \cdot \cdot \cdot, n)$ $R > r_i$ とする。 $R^3 = \sum_{i=1}^n r_i^3$ ならば、 $R^2 < \sum_{i=1}^n r_i^2$


[証明]

$$\sum_{i=1}^{n} r_i^2 - R^2 = \sum_{i=1}^{n} r_i^2 - \frac{\sum_{i=1}^{n} r_i^3}{R} = \frac{R \sum_{i=1}^{n} r_i^2 - \sum_{i=1}^{n} r_i^3}{R} = \frac{\sum_{i=1}^{n} r_i^2 (R - r_i)}{R} > 0$$
$$\therefore R^2 < \sum_{i=1}^{n} r_i^2$$

[終]

次に、例題2とは体積と表面積との関係が逆の条件となっている演習について考察する。

演習:粘土でできた半径 a、b、c の 3 つの球があって、それぞれの表面積を S_a 、 S_b 、 S_c とする。 $S_a+S_b=S_c$ という関係があるとき、それぞれの体積 V_a 、 V_b 、 V_c の間には、 V_a+V_b < V_c が成立することを示しなさい。

[仮定] a > 0, b > 0, c > 0, c > a, c > b, $a^2 + b^2 = c^2$

[結論] $a^3 + b^3 < c^3$

[証明]

$$c^{3} - (a^{3} + b^{3})$$

$$= c(a^{2} + b^{2}) - (a^{3} + b^{3})$$

$$= a^{2}(c - a) + b^{2}(c - b) > 0$$

$$\therefore a^{3} + b^{3} < c^{3}$$

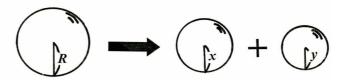
よって、V_a + V_b < V_cが成立する。 [終]

演習を一般化すると次のようになる。

< 演習の一般化 >

$$R > 0, r_i > 0 (i = 1, 2, \cdot \cdot \cdot, n) R > r_i$$
 とする。 $R^2 = \sum_{i=1}^n r_i^2$ ならば、 $R^3 > \sum_{i=1}^n r_i^3$

[証明]


$$R^{3} - \sum_{i=1}^{n} r_{i}^{3} = R \sum_{i=1}^{n} r_{i}^{2} - \sum_{i=1}^{n} r_{i}^{3} = \sum_{i=1}^{n} r_{i}^{2} (R - r_{i}) > 0$$
$$\therefore R^{3} > \sum_{i=1}^{n} r_{i}^{3}$$

[終]

(4)関数の問題としての拡張

余裕があれば、例題2、演習を受けて、次のような問題を考えさせるのも思考力 養成に好ましいものと思われる。

問題: 粘土でできた半径Rの球の表面積を表面積を S_R とする。この球を 2 つに分割し、半径 x および半径 y の球を作り、それぞれの表面積を S_x 、 S_y とする。 S_x + S_y が最大となるような分割の方法を論じなさい。

[解答]

題意より、 $R^3 = x^3 + y^3$ ・・・

また、
$$f(x) = x^2 + y^2$$
 ・・・

とおけば、 、 より、 $f(x) = x^2 + (R^3 - x^3)^{\frac{2}{3}}$ ・・・

となる。これより、f(x)が最大となる条件を求めればよい。

ここで、
$$\frac{df}{dx} = 2x \left\{ 1 - x \left(R^3 - x^3 \right)^{-\frac{1}{3}} \right\}$$
 だから、

$$x > 0$$
, $\frac{df}{dx} = 0$ のとき、 $x = R \cdot \left(\frac{1}{2}\right)^{\frac{1}{3}}$ ・・・

また、このときの y の値は、 、 より、 $y=R^{\bullet}\left(\frac{1}{2}\right)^{\frac{1}{3}}$

更に、
$$\frac{d^2f}{dx^2} = 2 - 4x(R^3 - x^3)^{-\frac{1}{3}} - 2x^4(R^3 - x^3)^{-\frac{4}{3}}$$

だから、
$$f''\left\{R^{\bullet}\left(\frac{1}{2}\right)^{\frac{1}{3}}\right\} = 2 - 4 - 2 = -4 < 0$$

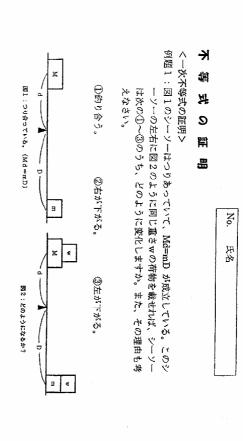
したがって、 $S_x + S_y$ が最大となるのは、 $x = y = R \cdot \left(\frac{1}{2}\right)^{\frac{1}{3}}$

となるように分割した場合である。

3 結 言

身近な事象を数学的に考察することで数学に対する興味・関心を高めることができ、その際に操作的な活動を取り入れることが可能であれば、事象の意味の把握が容易になり、問題に対する多様な見方や考え方を培うことができる。この観点から天秤や粘土は身近な存在でありイメージしやすいものである。今後も数学を学ぶ意義が体験でき多様な見方や考え方を育てる教育の創造に努めていきたい。

参考文献


- 1) 髙倉 亘「平成13年度 道研 数学科教育(高等学校)研修講座 提出レポート」.
- 2) 高倉 亘「平成14年度第57回北海道算数数学教育研究大会(札幌大会)高等学校部会第3分科会発表資料」.

<補遺1> 授業の学習指導案

学 習 指 導 案

				11 等 苯						
授業担	当者		髙 倉 亘	教科書名	第一学習社 高等学校 新数学 A					
教科・	科目		数学(数学 A < 2 単位 >)	学 年	3 年生 (男子 2 5 名	弘、女子8名)				
日日	诗	平成	成13年10月16日(火)4校時	単元名	§ 3 式と証明 2	不等式の証明				
使用教	室		3年生教室	配当時間	2 時間					
		2	2つの量 A、B の大小関係を知るに		身近にある大小比較に	関わる題材を取り				
単元目	標	は、	両者の差の符号を調べることで容	本時の目標	あげ、親しみを持ちながら大小比較の一					
		易に	こわかることを理解させる。	り方法について理解する。						
	時間		指導內容		指導上の留意点	備考				
導入	15分	, /	1 プリントを配布し、てこの原理に	こついて説明する。	小学校理科の復	(発問)シーソー				
		2	2 てこの原理に関する例題 1 を通し	って、クイズ感覚で紀	習として、てこの原	は左右どちらに				
			果の予想をしてもらう。(教具使	理について丁寧に 傾くか?						
				説明する。(モーメ						
展開	30分	. 3	3 具体的に数値をあてはめ、計算で	ントの説明)						
		4	4 3で得られた予想が一般に成立す							
			一次不等式に関する証明問題を	A > B を示すには、	A > B を示すには、					
			れることを認識させる。		A - B >0 を示せばよ	A - B >0 を示せばよ				
		į	5 大小比較するときの一般的な方法	まについて説明する。	いことを認識させ	(発問)一定体積				
		6	6 例題1の解答を行う。	る。A = B を示すに を有する粘						
		-	7 一定体積を有する物体を分割す	ると表面積が増加す	- は、A - B = 0 を示せ	塊を分割してい				
			ることを実験によって示す(教具	具使用 < 粘土 >)。	ばよいことにも言くと表面積は					
		8	8 活性炭を例にとりあげ、粉末の表	面積を増加させる方 及する。 のように変な						
			法について説明する。この問題を	一般化したものが例	J	るか。				
			題 2 であることを述べる。		例題1・2の各題					
		9	9 球の表面積・体積の公式を示し、	列題2の解説を行う。	材において、感覚的	(発問)球の表面				
					に成立すべき不等	積・体積を求める				
まとめ	5分	1	10 例題1、例題2のいずれにおいて	も、大小比較の方法	式を推定させる。	公式は?				
			は共通 (差をとって符号を調べる	ら)であることを強調						
			する。		別解などを示し、さ	時間が不足の場				
					まざまな考え方が	合は、次時に復習				
					あることを示す。	兼ねて説明する。				
評 価		\dagger		 ける方法として、A と	: プリントを提出					
		В	3 との差の符号を調べればよいことを		させ、理解度を確か					
				•	める。					
	1				1					

<補遺2> 授業プリント

<二次・三次不等式の証明>

例題2:粘土でできた半径cの球の表面積を Sc とする。この球を2つに分割し、 Sa、Sb、Scの間には①~②のうち、どのような関係が成立すると考えら 半径 a および半径 b の球を作り、それぞれの表面積を S。Sb とする。 れますか。また、その理由も考えなさい。

 $\mathfrak{D} S_a + S_b > S_c$ $\Im S_a + S_b < S_c$

演習:粘土でできた半径 a、b、cの3つの球があって、それぞれの表面積を Sa、 S_b 、 S_c とする。 $S_a+S_b=S_c$ という関係があるとき、それぞれの体稿 V_a 、 V_b 、 V_c の間には、 $V_a + V_b < V_c$ が成立することを示しなさい。

<補遺3> 授業プリント

10 11 12 13 14 15

 $\frac{e_2}{e_2}$

£2+

£2+

 ℓ_2 +

 ℓ_2 +

2 2 2 + + +

£2+

£2+

£2+

天秤のつりあいワークシート

No. 氏名

Case I:2種類のおもりを左右に吊るす。

(支点からの距離: $\ell_1 \! imes \! \ell_2$ 、おもりの重さ: $m_1 \! imes \! m_2$)

4	w	2	,,,	ě
$\ell_1 + \ell_2$	$\ell_1 + \ell_2$	$\ell_1 + \ell_2$	$\ell_1 + \ell_2$	左回りモーメント
				等号・不等号
$\ell_2 + \ell_1$	ℓ2+ ℓ1	$\ell_2 + \ell_1$	$\ell_2 + \ell_1$	右回りモーメント

O	
Ô١	
10	
Case II	
ø	
! i	
-	
ω	
ω	
益	
靈	
Umb	
濫	
الاللة	
9	
v	
ðŧ	
U)	
Ġ÷	
כייים	
٣	
作	
ᅅ	
D)	
ᄮ	
Πį	
ななに	
(1	
30	
JU	
A .	
en e	
d d	
Q L	
٠' ،	
•	
	•

(支点からの距離:イ, >ℓ, >ℓ,、おもりの重さ:ハn, >ハn, >n,)

左回りモーメント ₁ + ₂ + _ℓ

等号 · 不等号

右回リモーメント

l2+

£ 3+

 $\ell_2 + \ell_2 +$

l2+

 $\ell_2 + \ell_2 + \ell_3 + \ell_4$

٨	
颇	
数	
٧	
	1

36	35	34	33	32	31	30	29	28	27	26	25	24	23	n	21	20	19	18
<i>ℓ</i> , +	<i>l</i> ₁ +	ℓ,+	ℓ_1 +	ℓ_1 +	ℓ ₁ +	· e ₁ +	ℓ ₁ +	ℓ_1 +	ρ ₁ +	ε,+	₽ ₁ +	£,+	ξ ₁ +	Į, +	į +	₹,+	·	ℓ,+
$\ell_2 +$	$\ell_2 +$	ℓ_2 +	ℓ_2 +	$\ell_2 +$	ℓ_2 +	ℓ_2+	ℓ_2 +	ℓ_2 +	l ₂ +	$\ell_2 +$	$\ell_2 +$	ℓ_2 +	ℓ_2 +	ℓ_2 +	l ₂ +	ℓ_2 +	ℓ_2 +	ℓ_1 +
ℓ_3	l,	l ₃	ℓ_3	ℓ_3	ℓ_3	ℓ_3	ℓ_3	<i>e</i> ₃	e ₃	e ₃	ℓ_3	50	ç,	£3	حي	Ł3	ℓ_3	Ł3
ℓ_3 +	ℓ_3 +	ℓ_3 +	£3+	l3+	l3+	ℓ_3 +	ℓ_3 +	$\ell_3 +$	l3+	£3+	£3+	$\ell_3 +$	l3+	ℓ_3 +	l3+	ℓ_3 +	ℓ_3 +	£3+
l ₂ +	ℓ ₂ +	l ₂ +	l ₂ +	<i>?</i> ₂ +	l'2+	ℓ ₂ +	£2+	l ₂ +	€ ₂ +	<i>l</i> ₂ +	£2+	ℓ_2 +	ℓ_2 +	ℓ ₂ +	l ₂ +	l ₂ +	l ₂ +	£2+
ℓ_1	ŀ,	ℓ_1	l,	£,	ℓ_i	ŀ,	ℓ_1	ŀ,	$\ell_{_{1}}$	E,	l,	ℓ_1	$\ell_{_1}$	ℓ_1	ℓ_1	ℓ_1	$\ell_{_{1}}$	ℓ_1

<補遺4> 授業プリント の解答例

天秤のしりあいワークシート <解答例>

Case I: 2種類のおもりを左右に吊るす。

(支点からの距離:ヒ₁>ヒ₂、おもりの重さ:m,>m,)

4	3	2	1	No.
$m_2\ell_1 + m_1\ell_2$	$m_2\ell_1 + m_1\ell_2$	$m_1\ell_1 + m_2\ell_2$	$m_1\ell_1 + m_2\ell_2$	左回りモーメント
^	II	II	>	等号・不等号
$m_2\ell_2+m_1\ell_1$	$m_1\ell_2 + m_2\ell_1$	$m_2\ell_2 + m_i\ell_i$	$m_1\ell_1 + m_2\ell_1$	右回りモーメント

Case	4	ü
Case II:3種類のおもりを左右に吊るす。	$m_2\ell_1 + m_1\ell_2$	$m_2\ell_1 + m_1\ell_2$
を左右に	^	II
形 め す。	$m_2\ell_2 + m_i\ell_1$	$m_1\ell_2 + m_2\ell_1$

(女点からの距離: イ, > イ, > イ, 、おもりの重さ: m, > m, > m,)

	+		
No.	花回のオーメンフ	事事・一つ事事	竹回ッポーメソフ
1	$m_1\ell_1 + m_2\ell_2 + m_3\ell_3$	>	$m_1\ell_3 + m_2\ell_2 + m_3\ell_1$
2	$m_1\ell_1 + m_2\ell_2 + m_3\ell_3$	>	$m_1\ell_3 + m_3\ell_2 + m_2\ell_1$
3	$m_1\ell_1+m_2\ell_2+m_3\ell_3$	>	$m_2\ell_3+m_3\ell_2+m_1\ell_1$
4	$m_1\ell_1 + m_2\ell_2 + m_3\ell_3$	<	$m_2\ell_3+m_1\ell_2+m_3\ell_1$
υ'n	$m_1\ell_1 + m_2\ell_2 + m_3\ell_3$	~	$m_3\ell_3 + m_1\ell_2 + m_2\ell_1$
6	$m_1\ell_1 + m_2\ell_2 + m_3\ell_3$	ŧ	$m_3\ell_3 + m_2\ell_2 + m_1\ell_1$
7	$m_1\ell_1+m_3\ell_2+m_2\ell_3$	>	$m_1\ell_3 + m_2\ell_2 + m_3\ell_1$
8	$m_1\ell_1+m_3\ell_2+m_2\ell_3$	>	$m_1\ell_3 + m_3\ell_2 + m_2\ell_1$
9	$m_1\ell_1+m_3\ell_2+m_2\ell_3$	=	$m_2\ell_3 + m_3\ell_2 + m_4\ell_1$
10	$m_1\ell_1 + m_3\ell_2 + m_2\ell_3$	>	$m_2\ell_3+m_1\ell_2+m_3\ell_1$
11	$m_1\ell_1 + m_3\ell_2 + m_2\ell_3$	定まらない	$m_3\ell_3+m_1\ell_2+m_2\ell_1$
12	$m_1\ell_1 + m_3\ell_2 + m_2\ell_3$	^	$m_3\ell_3+m_2\ell_2+m_1\ell_1$
13	$m_3\ell_1+m_1\ell_2+m_2\ell_3$	>	$m_1\ell_3 + m_2\ell_2 + m_3\ell_1$
14	$m_3\ell_1+m_1\ell_2+m_2\ell_3$	定まらない	$m_1\ell_3 + m_3\ell_2 + m_2\ell_1$
15	$m_3\ell_1 + m_1\ell_2 + m_2\ell_3$	^	$m_2\ell_3+m_3\ell_2+m_1\ell_1$
16	$m_3\ell_1+m_1\ell_2+m_2\ell_3$	11	$m_2\ell_3 + m_1\ell_2 + m_3\ell_1$
17	$m_3\ell_1+m_1\ell_2+m_2\ell_3$	^	$m_3\ell_3+m_1\ell_2+m_2\ell_1$
18	$m_3\ell_1+m_1\ell_2+m_2\ell_3$	^	$m_3\ell_3+m_2\ell_2+m_1\ell_1$

35	7	33	32	31	30	29	28	27	26	25	24	13	z	21	20	19
$m_3\ell_1+m_2\ell_2+n_4\ell_3$	$m_3\ell_1 + m_2\ell_2 + m_1\ell_3$	$m_3\ell_1+m_2\ell_2+m_1\ell_3$	$m_3\ell_1 + m_2\ell_2 + m_1\ell_3$	$m_3\ell_1 + m_2\ell_2 + m_1\ell_3$	$m_2\ell_1+m_3\ell_2+m_1\ell_3$	$m_2\ell_1 + m_3\ell_2 + m_1\ell_3$	$m_2\ell_1 + m_3\ell_2 + m_4\ell_3$	$m_2\ell_1 + m_3\ell_2 + m_1\ell_3$	$m_2\ell_1 + m_3\ell_2 + m_1\ell_3$	$m_2\ell_1+m_3\ell_2+m_1\ell_3$	$m_2\ell_1 + m_1\ell_2 + m_3\ell_3$	$m_2\ell_1 + m_1\ell_2 + m_3\ell_3$	$m_2\ell_1+m_1\ell_2+m_3\ell_3$	$m_2\ell_1+m_1\ell_2+m_3\ell_3$	$m_2\ell_1 + m_1\ell_2 + m_3\ell_3$	$m_2\ell_1 + m_1\ell_2 + m_3\ell_3$
^	^	^	^	n	^	^	定まらない	^	1)	V	^	1)	>	定まらない	>	~
$m_1\ell_3 + m_1\ell_2 + m_2\ell_1$	$m_2\ell_3 + m_1\ell_2 + m_3\ell_1$	$m_2\ell_3 + m_3\ell_2 + m_1\ell_1$	$m_1\ell_3 + m_3\ell_2 + m_2\ell_1$	$m_1\ell_3 + m_2\ell_2 + m_3\ell_1$	$m_3\ell_3+m_2\ell_2+m_i\ell_i$	$m_3\ell_3 + m_1\ell_2 + m_2\ell_1$	$m_2\ell_3 + m_1\ell_2 + m_3\ell_1$	$m_2\ell_3 + m_3\ell_2 + m_1\ell_1$	$m_1\ell_3 + m_3\ell_2 + m_2\ell_1$	$m_1\ell_3 + m_2\ell_2 + m_3\ell_1$	$m_3\ell_3+m_2\ell_2+m_1\ell_1$	$m_3\ell_3 + m_1\ell_2 + m_2\ell_1$	$m_2\ell_3 + m_1\ell_2 + m_3\ell_1$	$m_2\ell_3+m_3\ell_2+m_1\ell_1$	$m_1\ell_3 + m_3\ell_2 + m_2\ell$	$m_1\ell_1+m_2\ell_2+m_3\ell_1$
	$m_3\ell_1 + m_2\ell_2 + m_1\ell_3$ <	$m_3\ell_1 + m_1\ell_2 + m_1\ell_3 \qquad < \qquad $ $m_3\ell_1 + m_2\ell_2 + m_1\ell_3 \qquad < \qquad $	$m_3\ell_1 + m_2\ell_2 + m_1\ell_3$ < $m_3\ell_1 + m_2\ell_2 + m_1\ell_3$ < $m_3\ell_1 + m_2\ell_2 + m_1\ell_3$ <	$m_1\ell_1 + m_2\ell_2 + m_1\ell_3$ < $m_3\ell_1 + m_2\ell_2 + m_1\ell_3$ < $m_3\ell_1 + m_2\ell_2 + m_1\ell_3$ < $m_3\ell_1 + m_2\ell_2 + m_1\ell_3$ <	$m_{3}\ell_{1} + m_{2}\ell_{2} + m_{\ell}\ell_{3} = $ $m_{5}\ell_{1} + m_{2}\ell_{2} + m_{\ell}\ell_{3} < $	$m_2 \ell_1 + m_3 \ell_2 + m_4 \ell_5 \qquad <$ $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_5 \qquad =$ $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_5 \qquad <$ $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_5 \qquad <$ $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_5 \qquad <$ $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_5 \qquad <$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$m_2 \ell_1 + m_3 \ell_2 + m_4 \ell_3$ 定まらない $m_2 \ell_1 + m_3 \ell_2 + m_4 \ell_3$ < $m_2 \ell_1 + m_3 \ell_2 + m_4 \ell_3$ < $m_2 \ell_1 + m_3 \ell_2 + m_4 \ell_3$ < $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ = $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ < $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ < $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ < $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ <	$m_2 \ell_1 + m_3 \ell_2 + m_4 \ell_3$ $<$ $m_2 \ell_1 + m_3 \ell_2 + m_4 \ell_3$ $\not\equiv \pm 5 t_2 \iota \vee$ $m_2 \ell_1 + m_3 \ell_2 + m_4 \ell_3$ $<$ $m_2 \ell_1 + m_3 \ell_2 + m_4 \ell_3$ $<$ $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ $<$ $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ $<$ $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ $<$ $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ $<$ $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ $<$ $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ $<$ $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ $<$	$m_2 \ell_1 + m_3 \ell_2 + m_4 \ell_3$ = $m_2 \ell_1 + m_3 \ell_2 + m_4 \ell_3$ < $m_2 \ell_1 + m_3 \ell_2 + m_4 \ell_3$ < $m_2 \ell_1 + m_3 \ell_2 + m_4 \ell_3$ < $m_2 \ell_1 + m_3 \ell_2 + m_4 \ell_3$ < $m_2 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ < $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ < $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ < $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ < $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ < $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ < $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ < $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ < < $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ < < $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ < < $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ < < $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ < < $m_3 \ell_1 + m_2 \ell_3 + m_4 \ell_3$ < < $m_3 \ell_1 + m_2 \ell_3 + m_4 \ell_3$ < < $m_3 \ell_1 + m_2 \ell_3 + m_4 \ell_3$ < < $m_3 \ell_1 + m_2 \ell_3 + m_4 \ell_3$ < < $m_3 \ell_1 + m_2 \ell_3 + m_4 \ell_3$ < < $m_3 \ell_1 + m_2 \ell_3 + m_4 \ell_3$ < < $m_3 \ell_1 + m_2 \ell_3 + m_4 \ell_3$ < < $m_3 \ell_1 + m_2 \ell_3 + m_4 \ell_3$ < < $m_3 \ell_1 + m_2 \ell_3 + m_4 \ell_3$ < < $m_3 \ell_1 + m_2 \ell_3 + m_4 \ell_3$ < < $m_3 \ell_1 + m_2 \ell_3 + m_4 \ell_3$ < < $m_3 \ell_1 + m_2 \ell_3 + m_4 \ell_3$ < < $m_3 \ell_1 + m_2 \ell_3 + m_4 \ell_3$ < < $m_3 \ell_1 + m_2 \ell_3 + m_4 \ell_3$ < < $m_3 \ell_1 + m_2 \ell_3 + m_4 \ell_3$ < < $m_3 \ell_1 + m_2 \ell_3 + m_4 \ell_3$ < < $m_3 \ell_1 + m_2 \ell_3 + m_4 \ell_3$ < < $m_3 \ell_1 + m_2 \ell_3 + m_4 \ell_3$ < < $m_3 \ell_1 + m_2 \ell_3 + m_4 \ell_3$ < < $m_3 \ell_1 + m_2 \ell_3 + m_4 \ell_3$ < < $m_3 \ell_1 + m_2 \ell_3 + m_4 \ell_3$ < < $m_3 \ell_1 + m_2 \ell_3 + m_4 \ell_3$ < < $m_3 \ell_1 + m_2 \ell_3 + m_4 \ell_3$ < < $m_3 \ell_1 + m_2 \ell_3 + m_4 \ell_3$ < < $m_3 \ell_1 + m_2 \ell_3 + m_4 \ell_3$ < < $m_3 \ell_1 + m_2 \ell_3 + m_4 \ell_3$ < < $m_3 \ell_1 + m_2 \ell_3 + m_4 \ell_3$ < < $m_3 \ell_1 + m_2 \ell_3 + m_4 \ell_3$ < < $m_3 \ell_1 + m_2 \ell_3 + m_4 \ell_3$ < < $m_3 \ell_1 + m_2 \ell_3 + m_4 \ell_3$ < < $m_3 \ell_1 + m_2 \ell_3 + m_4 \ell_3$ < < $m_3 \ell_1 + m_2 \ell_3 + m_4 \ell_3$ < < $m_3 \ell_1 + m_2 \ell_3 + m_4 \ell_3$ < < $m_3 \ell_1 + m_2 \ell_3 + m_4 \ell_3$ < < $m_3 \ell_1 + m_2 \ell_3 + m_4 \ell_3$ < < $m_3 \ell_1 + m_2 \ell_2 + m_3 \ell_3$ < < $m_3 \ell_1 + m_2 \ell_2 + m_3 \ell_3$ < < $m_3 \ell_1 + m_2 \ell_2 + m_3 \ell_3$ < < $m_3 \ell_1 + m_2 \ell_2 + m_3 \ell_3$ < < $m_3 \ell_1 + m_2 \ell_2 + m_3 \ell_3$	$m_2 \ell_1 + m_3 \ell_2 + m_4 \ell_3$ > $m_2 \ell_1 + m_3 \ell_2 + m_4 \ell_3$ = $m_2 \ell_1 + m_3 \ell_2 + m_4 \ell_3$ < $m_2 \ell_1 + m_3 \ell_2 + m_4 \ell_3$ < $m_2 \ell_1 + m_3 \ell_2 + m_4 \ell_3$ $\not\equiv \pm 5 t_2 \iota \lor \iota$ $m_2 \ell_1 + m_3 \ell_2 + m_4 \ell_3$ < $m_3 \ell_1 + m_3 \ell_2 + m_4 \ell_3$ < $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ < $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ < $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ < $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ < $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ < $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ < $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ < $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ < $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ < < $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ < < $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ < < $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ < < $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ < < $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ < < $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ < < $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ < < $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ < < $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ < < $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ < < $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ < < $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ < < $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ < < $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ < < $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ < < $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ < < $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ < < $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ < < $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ < < $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ < < $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ < < $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ < < $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ < < $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ < < $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ < < $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ < < $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ < < $m_3 \ell_1 + m_2 \ell_2 + m_2 \ell_3 + m_4 \ell_3$ < < $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ < < $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ < < $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ < < $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ < < $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ < < $m_3 \ell_1 + m_2 \ell_2 + m_2 \ell_3 + m_4 \ell_3$ < < $m_3 \ell_1 + m_2 \ell_2 + m_2 \ell_3 + m_4 \ell_3$ < < $m_3 \ell_1 + m_2 \ell_2 + m_2 \ell_3 + $	$m_2 \ell_1 + m_1 \ell_2 + m_2 \ell_3$	$m_2 \ell_1 + m_1 \ell_2 + m_3 \ell_3$ = $m_2 \ell_1 + m_1 \ell_2 + m_3 \ell_3$ < $m_2 \ell_1 + m_3 \ell_2 + m_4 \ell_3$ > $m_2 \ell_1 + m_3 \ell_2 + m_4 \ell_3$ > $m_2 \ell_1 + m_3 \ell_2 + m_4 \ell_3$ をまらない $m_2 \ell_1 + m_3 \ell_2 + m_4 \ell_3$ (全まらない $m_2 \ell_1 + m_3 \ell_2 + m_4 \ell_3$ < $m_2 \ell_1 + m_3 \ell_2 + m_4 \ell_3$ < $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ = $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ < $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ < < $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ < < $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ < < $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ < < $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ < < < $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ < < < < > < < < < < < < < < < < < < <	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$m_2 \ell_1 + m_1 \ell_2 + m_3 \ell_3$ 定まらない $m_2 \ell_1 + m_1 \ell_2 + m_3 \ell_3$ > $m_2 \ell_1 + m_1 \ell_2 + m_3 \ell_3$ = $m_2 \ell_1 + m_1 \ell_2 + m_3 \ell_3$ = $m_2 \ell_1 + m_3 \ell_2 + m_3 \ell_3$ > $m_2 \ell_1 + m_3 \ell_2 + m_3 \ell_3$ > $m_2 \ell_1 + m_3 \ell_2 + m_4 \ell_3$ > $m_2 \ell_1 + m_3 \ell_2 + m_4 \ell_3$ > $m_2 \ell_1 + m_3 \ell_2 + m_4 \ell_3$ $\xi \pm 5 \times 2 \psi$ > $m_2 \ell_1 + m_3 \ell_2 + m_4 \ell_3$ $\xi \pm 5 \times 2 \psi$ > $m_3 \ell_1 + m_3 \ell_2 + m_4 \ell_3$ $\xi \pm 6 \times 2 \psi$ > $m_3 \ell_1 + m_3 \ell_2 + m_4 \ell_3$ $\xi \pm 6 \times 2 \psi$ > $m_3 \ell_1 + m_3 \ell_2 + m_4 \ell_3$ $\xi \pm 6 \times 2 \psi$ > $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ $\xi \pm 6 \times 2 \psi$ > $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ $\xi \pm 6 \times 2 \psi$ > $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ $\xi \pm 6 \times 2 \psi$ > $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ $\xi \pm 6 \times 2 \psi$ > $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ $\xi \pm 6 \times 2 \psi$ > $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ $\xi \pm 6 \times 2 \psi$ > $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ $\xi \pm 6 \times 2 \psi$ > $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ $\xi \pm 6 \times 2 \psi$ > $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ $\xi \pm 6 \times 2 \psi$ > $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ $\xi \pm 6 \times 2 \psi$ > $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ $\xi \pm 6 \times 2 \psi$ > $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ $\xi \pm 6 \times 2 \psi$ > $m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3$ $\xi \pm 6 \times 2 \psi$ >	$ m_2 \ell_1 + m_1 \ell_2 + m_3 \ell_3 $ $ m_2 \ell_1 + m_4 \ell_2 + m_3 \ell_3 $ $ m_2 \ell_1 + m_4 \ell_2 + m_3 \ell_3 $ $ m_2 \ell_1 + m_4 \ell_2 + m_3 \ell_3 $ $ m_2 \ell_1 + m_3 \ell_2 + m_3 \ell_3 $ $ m_2 \ell_1 + m_3 \ell_2 + m_4 \ell_3 $ $ m_2 \ell_1 + m_3 \ell_2 + m_4 \ell_3 $ $ m_2 \ell_1 + m_3 \ell_2 + m_4 \ell_3 $ $ m_2 \ell_1 + m_3 \ell_2 + m_4 \ell_3 $ $ m_2 \ell_1 + m_3 \ell_2 + m_4 \ell_3 $ $ m_2 \ell_1 + m_3 \ell_2 + m_4 \ell_3 $ $ m_3 \ell_1 + m_3 \ell_2 + m_4 \ell_3 $ $ m_3 \ell_1 + m_3 \ell_2 + m_4 \ell_3 $ $ m_3 \ell_1 + m_3 \ell_2 + m_4 \ell_3 $ $ m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3 $ $ m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3 $ $ m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3 $ $ m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3 $ $ m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3 $ $ m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3 $ $ m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3 $ $ < $ $ m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3 $ $ < $ $ m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3 $ $ < $ $ m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3 $ $ < $ $ < $ $ m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3 $ $ < $ $ < $ $ m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3 $ $ < $ $ < $ $ < $ $ m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3 $ $ < $ $ < $ $ < $ $ < $ $ < $ $ m_3 \ell_1 + m_2 \ell_2 + m_4 \ell_3 $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $ $ < $

・Case I たついて

と右辺との差の符号を単純に調べればよい。 本質的には No.1 の不等式と No.2 の等式の場合のみを考えればよい。証明は左辺

・Case II について

(1) 等式であるもの

6, 9, 16, 23, 26, 31 <6通り>

(2) 証明が Case I の不等式と本質的に同じもの(1 段階の証明) 1, 3, 5, 8, 10, 12, 13, 15, 17, 20, 22, 24, 25,

27, 29, 32, 34, 36 <18通り>

(3) 証明が左右のモーメント以外に他の1つの式を仲介して行うもの(2段階の証明) 2, 4, 7, 18, 19, 30, 33, 35 <8通り>

(4) 大小関係が定まらないもの 11, 14, 21, 28 <4通り>

· Case II (3) だついて

[例] Case II No.2 の証明の流れ < (No.3 の右辺) を仲介する> (No.2の左辺) = (No.3の左辺) > <u>(No.3の右辺)</u> > (No.2の右辺)