リアリティのある問題

旭川南高校 岡崎知之

1. 算数編

(1) ある銭湯では、入館券を1枚600円で売っています。 この銭湯では回数券も販売しており、12回分で6000円と大変お得です。 この回数券の割引率は何%でしょうか? (自作)

(コメント)

私のお気に入りのスーパー銭湯での現実問題です。生徒の中にも同じ銭湯のファンがいて、共感してもらうことができました。

(ヒント)

20%ではありません。

(2) 肉屋に肉を買いに行きました。安く購入するために、2店に値引き交渉を したところ、こう言われました。

(A店)「ウチは値段が勝負だからねぇ。値段を10%引くよ。」

(B店)「ウチは量が勝負さ。定価で買ったら、肉を10%増やすよ。」

A店・B店のどちらがお得でしょうか?

(自作)

(コメント)

佐呂間町に住んでいたとき、いつもお肉をサービスしてくれる肉屋さんが ありました。今では量を増やしてくれる店になかなか出会えませんね。

(ヒント)

1 g 1 円など、自分で価格設定をして、確かめてみましょう。

(3) 1階から5階まで20秒で移動するエレベータがある。 このエレベータで1階から20階まで移動すると、何秒かかるか。

(コメント)

授業時間が少しだけ余ったときに、よく披露する問題です。 普段成績が良くない生徒に限って、正解してくれます。

(ヒント)

英国式英語(1階=0階,2階=1階)ならば分かりやすいのかも。

(4) カタツムリが深さ10mの井戸に落ちてしまった。地上を目指し、 屋に2m上るが、夜に眠ると1m下るとする。 このペースで地上に到着するのは何日目か?

(コメント)

思わずカタツムリを「頑張れ!」と応援したくなるシチュエーションですね。 これも真面目な生徒よりも、ちょっと変わった生徒の方が正解します。

(ヒント)

意外と早く着くものです。

(5) ある小学校のクラスに携帯電話の所持率を調査したところ、82.5%となった。このクラス全員の人数は何人か? (某私立中学校)

(コメント)

「日能研」の中吊り広告に掲載された問題です。

%の値を忘れてしまったので、今回逆算して求めてみましたが、 問題のシンプルさ、一瞬の疑問感、絶妙な数値設定、最高です。

(ヒント)

最後は、学校の標準的なクラス人数が決定打になります。 「大学」のクラスなら、複数解になるかも?

(6) スマートフォンのパスコードを忘れてしまい、記憶を頼りに5回入力した。 その5回とも4個の数のうち2個は合っていたが、桁も合っている数はなかった。 本当のスマートフォンのパスコードは? (世界算数例題)

(入力したパスコード)

6087 5173 1358 3825 2531

(コメント)

リアリティがある問題は、共感を呼びますが、今後はこのような身近な I T に関する問題が、共感しやすいのかもしれません。

(ヒント)

4個のうちの2個を仮定するところから始めましょう。

2. 数学編

(1) すごろくで残り6マスで上がれるものとする。 このとき、ちょうど「あがり」のマスに止まれる確率は?(高校生クイズ)

(コメント)

ちょうど「あがり」ルールのすごろくも、あまり見なくなりましたね。 そんな懐かしい話も一緒にしてあげると効果的です。

(ヒント)

シンプルですが、まともに計算すると大変です。エレガントな計算方法を。

(2) 2台の車がそれぞれ別の方向から向かい合って走っている。

2台の車の距離は20km、時速は10kmである。

このとき、1匹のハエが2台の車の間を時速15kmで往復するならば、 車が衝突するまでにハエは何km飛行することになるだろうか? (逸話)

(コメント)

問題構造に気づけば小学生でも答えられる問題ですが、この問題をあるパーティーで出題されたフォン・ノイマンは、一瞬にして無限級数で解いたそうです。数Ⅲの問題としてオススメ。

(ヒント)

(距離) = (速さ) × (時間)

(3) 大泉・安田・戸次・音尾の4人が暗闇の中、吊り橋を渡り駅に向かおうとしている。

次の条件があるとき、16分後に出発する最終列車に全員乗れるだろうか?

- 4人が吊り橋を渡るのにそれぞれ、1分・2分・5分・8分かかる。
- 吊り橋には2人まで乗れるが、遅い人の速さに合わせなければならない
- ・移動の際、1本しかない懐中電灯を使わなければならない。

(「数の魔法使い」(王様文庫) 改)

(コメント)

「16分後までに乗車」のスリルが味わえる問題。 どの生徒でも真剣に取り組んでくれる秀作です。

(ヒント)

ついつい速い人と遅い人を組み合わせてしまいますが、そうすると時間が かかってしまいます。逆転の発想が必要です。 (4) 2年次の見学旅行では「コース別研修」があり、コースにより見学料金が異なる。 現在、担任が見学料金を集めているが、2年5組で

Aコース(480円) Bコース(1600円)の料金を集めたところ、 合計で35,680円が集まっている。

この金額をもとに、A・Bそれぞれのコースで見学料金を<u>支払った</u>生徒の数を求めよ。

(ちなみに、A・Bコースを<u>希望している</u>生徒の数は、それぞれ14・21名の計35名である。) (実話)

(コメント)

私の失敗談そのものです。料金を徴収しているうちに、2種の金額が混ざって しまいました。おかげで、久々に数学の威力を感じることができました。

(ヒント)

今年のセンターに出題された「1次不定方程式」です。応用例の1つとして使ってみては?

(5) 忘れん坊の岡崎くんは、毎日、家→電車→バス→学校の順で登校する。 岡崎くんは電車に、バスに、学校に、それぞれ1/3の確率でカサを忘れる 習慣がある。学校を出てカサがないと気付いたとき、カサが電車にある確率は? (模試)

(コメント)

条件付き確率の問題ですが、誰でも経験があるカサの置き忘れをうまく 問題化していますね。生徒の間でも「お前のことじゃないの?」と楽しく 会話する姿が見られました。教員が熱く語らずとも、生徒が勝手に盛り上がる、 アクティブラーニング的要素をもった問題です。

(ヒント)

もちろん「ベイズの定理」で。

(6) n人でじゃんけんをしたときに、あいこになる確率は?

(コメント)

問題を提示する前に、4・5人でじゃんけんしてみましょう。

(ヒント)

最終的には美しい式が完成します。挑戦したことのない方はぜひ。

(7) ある魔法使いは、以下の3種類の魔法を何度でも使うことが出来る。

魔法A:みかん1個とぶどう2個をりんご2個に変える

魔法B:ぶどう1個とりんご1個をみかん3個に変える

魔法C:りんご1個とみかん1個をぶどう4個に変える

りんご・みかん・りんごが各2011個ずつある状態から始めて、魔法を

1回以上使った結果、りんごとぶどうは2011個、みかんは2011個以上に

なった。このときのみかんの個数は?

(JMMO2011 予選)

(コメント)

「魔法」という言葉で、メルヘンの世界に誘ってくれる問題。 TV番組「コマ大数学科」でも取り上げられました。

(ヒント)

中学生対象の問題なのですが、不定方程式を利用して、情報を整理していきます。

3. 数学研究編

(1) 6人の仲間がいる。そのうちの1人が「幸運のメール」というメールを送った。 「このメールを送った人は、1時間以内に、仲間の誰かに同じ内容のメールを送っ てください。ただし、すでに自分にこのメールを送ってくれた人や、すでに自分が このメールを送った人には、送ってはいけません。」

メールを受け取ったある人が、送る相手がいなくなってしまうまで、最大 何時間かかるか? (JMMO練習問題)

(コメント)

チェーンメールの恐ろしさも同時に体験できる、まさにリアリティのある問題。 ネットワーク理論の初歩を学べます。

(ヒント)

人を点で、メールを辺で表すと、この問題は 「頂点が6個で一筆書き可能な単純グラフは最大何本の辺をもつか」 に変換できます。 (2) ある会社では秘書が社長の机に書類を置き、社長は暇なときにその書類に 目を通して判を押す。秘書は必ず書類の山の一番上に新しい書類を置き、社長は 必ず一番上にある書類から目を通す。

ある日、書類の数は午前・午後合わせて9通であり、書類には机に置かれた順に 1から9までの番号が付けられていた。

社長が午前中に書類8に判を押したことは分かっている。

(コメント)

映画やドラマで見られる、印鑑ばかり押す社長の姿が、 ついに数学界で登場。「暇なときに」という問題に関係のないコメントが 逆にリアリティを感じさせますね。

(ヒント)

書類 $1 \sim 7$ の中から k 枚の書類に判を押したとき、書類 9 の押され方は (k+2) 通り。

- (3) n, Nは2n≦Nをみたす正の整数である。
 - ある国にN人の国民がいて、反乱鎮圧のために次のような方法をとる。
 - 各国民は自分以外の国民のうち何人かを監視する
 - ・国民のうち何人かが反乱を起こした際、反乱を起こさなかった各国民は、 自分が監視している国民のうち反乱を起こした国民を、
 - 1人まで取り押さえることができる。
 - ・反乱を起こした国民をすべて取り押さえると、その反乱を鎮圧することができる。

すべての国民について、監視している国民の人数を調べてその値を足し合わせるとK人となった。そして、そのn人以下の国民による反乱に対しても必ず鎮圧する方法が存在した。

このとき、Kとしてありうる最小の値を求めよ。

ただし、国民Aが国民Bを監視しても、国民Bが国民Aを監視しているとは 限らないとする。 (JMMO2013 本選)

(コメント)

「鎮圧」「監視」。リアルなのかバーチャルなのか? それはその人のおかれている状況によるのかもしれません。

(ヒント)

数式を用いなくても、解を求めるだけなら、論理のみで〇Kです。

- (4) 2010個の空港がある。各空港からは他の空港への直行便がいくつか 開設されており、次の条件を満たしている。
 - (1) どの2つの空港A, BについてもAから出発し、いくつかの直行便を 乗り継いでBに行くことができる。
 - (2) 開設されているどの直行便についても、それを閉鎖することで 条件(1) を満たさなくなる。

ある日、開設されていた直行便の1つが閉鎖された。

新たな直行便(閉鎖された便と同じものでもよい)を1つ開設することで、 再び条件(1)(2)をみたすようにするとき、開設の仕方は最大何通り考えられるか。 ただし、空港Xから空港Yへの直行便があるときに、空港Yから空港Xへの 直行便があるとは限らない (JMO2010 予選)

(コメント)

知り合いに飛行機の時刻表マニアがいます。

毎月、時刻表を手に入れて、ニヤニヤしながらながめています。

そんなJRや時刻表のマニアの方にはたまらない問題ですね。

ちょっと、問題条件が複雑ですが…

(ヒント)

条件(1)(2)を満たす直行便の開設の仕方は

(s-1)(t-1)以下。 $(s+t \le 2010)$

<解答>

- 1-(1)約17% (2)A店 (3)95秒 (4)8日目の昼 (5)40人 (6)8712
- 2-(1)16807/46656 (2)15km (3)略 (4)11人·19人 (5)6/19
 - $(6)(3^{n-1}-2^n+2)/3^{n-1}$
- 3-(1)12時間 (2)704通り (3)nN (4)1008016通り

<補足>

2-(1) について

$$\frac{{}_{5}C_{0}\cdot 6^{5}+{}_{5}C_{1}\cdot 6^{4}+\cdots+{}_{5}C_{5}\cdot 6^{0}}{6^{6}}=\frac{7^{5}}{6^{6}}$$

(2016年1月30日 数学教育実践研究会 にて発表)