あるごじゃんけんの勝率 ーオリジナルじゃんけんで数楽しよう!

旭川南高等学校 数学研究部「あるご」 3年次…山口滉士郎 中森光 1年次…志賀友哉 阿部郁也 小野瑶介 平澤佑樹

1. 研究の動機や目的

顧問の先生から「じゃんけんであいこになる確率を求めよ。」

というミッションを受け、「n人のときのあいこ確率」の式を求めた

ところ、確率が急激に増加するようすがわかりました。

その研究をきっかけに、科学館での展示のため、

数学研究部オリジナル「あるごじゃんけん」を開発しました。

「あるごじゃんけん」には「王様」と「泥棒」という

- 2つの特殊役が存在しますが、
 - •「『王様』と『泥棒』が同時に場に現れると『泥棒』の勝ちになる」

ことから、

あいこの確率

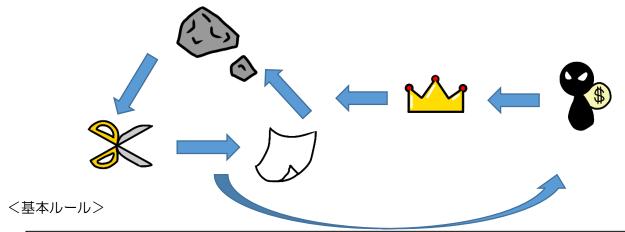
人数	確率
4	48%
5	63%
6	74%
7	83%
8	88%
9	92%

プレイする人数が増えるほどその機会が増えるので、

•「人数が少ないうちは『王様』が有利、多くなると『泥棒』が有利になるのではないか」と推測し、 その法則を検証するため、研究を始めました。

2. 研究の方法や内容

「オリジナルじゃんけん」を考案し、役ごとの勝ちやすさを数学的確率に基づいて計算し、調べる。 <「あるごじゃんけん」の概念図>



- (1) 場に「王様」「泥棒」のカードが出現していないとき ⇒通常のじゃんけんと同じ
- (2) 場に「王様」が出現して、「泥棒」が出現していないとき
 - ⇒「王様」の勝ち
- (3) 場に「泥棒」が出現して、「王様」が出現していないとき
 - ⇒「泥棒」の負け
- (4) 場に「グー」「チョキ」「パー」がすべて出現しているとき

⇒あいこ

(例1) *ルール(2)適用

(例2) *ルール(3)適用

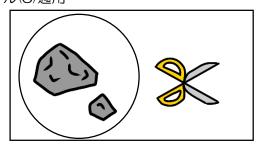
(例3) *ルール(4)適用

あいこ

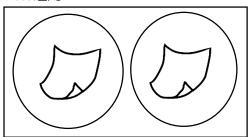
<特殊ルール>

(5) 場に「泥棒」が出現して、「王様」が出現していないときに、 「グー」「チョキ」「パー」のいずれか2種が出現していれば、 「泥棒」以外のカードは、通常のじゃんけんのルールで勝敗を決める。

(例4) *ルール(5)適用



(例5) *ルール(5)適用



3. 研究の結果と考察

<仮説>

(1) 人数と勝率の関係

王様は「負の相関(単調減少)」 泥棒は「正の相関(単調増加)」をもつ

(2) ある人数を上回ると、(泥棒の勝率) > (王様の勝率) が成り立つ

<検証>

(表記)

K…王様 T…泥棒 G…グー C…チョキ P…パー O…グーor チョキ or パー

W…勝ち L…負け D…あいこ

 $\Delta\Delta\Delta$ …「G」「C」「P」の重複順列のうち、

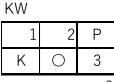
あいことなる順列を除いたもの(18通り)

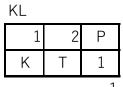
□□□···GCPの順列すべて(6通り)

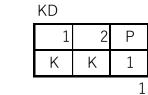
(例) GGP CPC

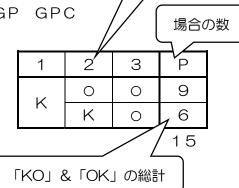
(例) CGP GPC

(1) 2人のとき



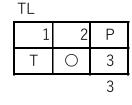






プレイヤ-N o

TW		
1	2	Р
Т	K	1
		1



TD		
1	2	Р
Т	Τ	1
_	•	1

GW		
1	2	Р
G	Т	1
G	С	1
		2

GL		
1	2	Р
G	K	1
G	Р	1
		2

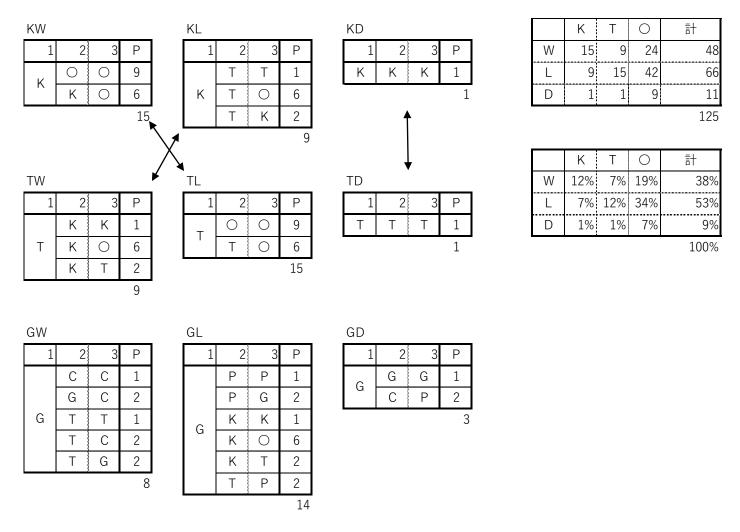
GD		
1	2	Р
G	G	1
		1

	K	Т	0	計
W	3	1	6	10
L	1	3	6	10
D	1	1	3	5

25

	K	Т	0	計
W	12%	4%	24%	40%
L	4%	12%	24%	40%
D	4%	4%	12%	20%

(2) 3人のとき



ここで、ある法則があることに気付きました。

- 1)「王様」の勝ちパターンの「K」を「T」に変えると、「泥棒」の負けパターンになる。
 - *「王様」の負けパターンと「泥棒」の勝ちパターン、また、あいこパターンにも同様の関係が成り立つ
- 2) プレイヤー1のカードを固定したとき、そのパターン数は「5^{人数-1}」通り。
 - *3人のとき、プレイヤー1が「王様」を出すパターンは「5²」通り

- 1) 「王様」と「泥棒」について
 - 一方の「勝ち確率」は、もう一方の「負け確率」に等しい。
 - •「あいこの確率」は等しい。
- 2) プレイヤー1が「王様」「泥棒」「グーチョキパー」となるパターン数の比は

王様:泥棒:グーチョキパー=1:1:3

この法則から、仮説を検証するためには、「王様」の確率のみを調べればよいことが分かりました。。 またこの法則を利用すれば、「王様」と「グーチョキパー」の各「勝ち」「あいこ」確率を求めれば、 すべての確率が計算できます。

(3) 4人のとき

(i) プレイヤー1が「王様」または「泥棒」を出したとき

• KW (=TL)

プレイヤー2~4が

a)「K」を出さないとき

「GCP」(あいこ) 以外で、プレイヤー1の勝利だから $3^3 - 3! = 27 - 6 = 21$

b)「K」を1人が出すとき

「K〇〇」(の順列)で、プレイヤー1の勝利だから

 $3 \cdot 3^2 = 27$

c)「K」を2人が出すとき

「KKO」(の順列)で、プレイヤー1の勝利だから

 $3 \cdot 3 = 9$

計 57

• KD (=TD)

プレイヤー2~4が

a)「KKK」 と b)「GCP」(の順列) であいこだから

1+6=7 計 7

• KL (=TW)

全パターンが $5^3 = 125$ なので、

125 - (57 + 7) = 61

(ii) プレイヤー1が「グー」を出したとき

• GW

プレイヤー2~4が

a)「T」を出さないとき

「Pなし」かつ「GGG」(負け or あいこ)以外で、プレイヤー1の勝利だから $2^3-1=7$

b)「T」を1人が出すとき

「Pなし」(負け or あいこ) 以外で、プレイヤー1の勝利だから

 $3 \cdot 2^2 = 12$

c)「T」を2人が出すとき

「Pなし」(負け)で、プレイヤー1の勝利だから

 $3 \cdot 2 = 6$

d)「T」を3人が出すとき

1 計 26

• GD

プレイヤー2~4が

a)「K」または「T」を1人が出すとき

「CP」(の順列) であいこだから

 $2 \cdot 3! = 12$

b)「K」または「T」を出さないとき

「GGG」または「GCP」(の順列) または「CPのみ」であいこだから $1+6+3\cdot2=13$

計 25

• GL

全パターンが $5^3 = 125$ なので、

125 - (26 + 25) = 74

*4人のときの全パターン

ΚW

1	2	3	4	Р
	\triangle	\triangle	\triangle	18
	G	G	G	1
K	С	С	С	1
1	Р	Р	Р	1
	K	0	0	27
	K	K	0	9
				57

 KL

1	2	3	4	Р
	Т	Т	Т	1
	Т	Т	0	9
K	Т	Т	K	3
1	Т	K	K	3
	Т	K	0	18
	Т	0	0	27
				61

KD

1	2	3	4	Р
K	K	K	Κ	1
IX	G	С	Р	6

TW

1	2	3	4	Р
	K	K	K	1
	K	K	0	9
T	K	K	Т	3
	K	0	0	27
	K	0	Т	18
	K	Т	Т	3
				61

TL

ıL				
1	2	3	4	Р
	\triangle	\triangle	\triangle	18
	G	G	G	1
Т	С	С	С	1
'	Р	Р	Р	1
	Т	Т	0	9
	Т	0	0	27
				57

TD

1	2	3	4	Р
Т	G	С	Р	6
'	Т	Т	Т	1

GW

1	2	3	4	Р
	С	С	С	1
	G	С	С	3
	G	G	С	3
	Т	Т	Τ	1
G	Т	Т	G	3
	Т	Т	С	3
	Т	G	G	3
	Т	G	С	6
	Т	С	С	3
				26

GL

1	2	3	4	Р
	Р	Р	Р	1
	Р	Р	G	3
	Р	G	G	3
	K	K	K	1
	K	K	0	9
	K	K	Т	3
	K	G	G	3
G	K	G	С	6
d	K	G	Р	6
	K	С	С	3
	K	Р	Р	3
	K	Т	0	18
	K	Т	Т	18
	Т	Т	Р	3
	Т	Р	Р	3
	Τ	G	Р	6

GD

1	2	3	4	Р
	G	G	G	1
	G	С	Р	6
G	С	С	Р	3
G	С	Р	Р	3
	K	С	Р	6
	Т	С	Р	6
				25

<結論>

これまでのデータをまとめると、以下の表のようになりました。

	KW	TW
2	12%	4%
3	12%	7%
4	9%	10%

2~4人の場合については、増加(減少)率が小さいですが、 仮説の一部を検証することはできました。

4人の勝敗率

	K	Т	0	計
W	57	61	78	196
L	61	57	222	340
D	7	7	75	89

625

	K	Т	0	計
W	9%	10%	12%	31%
L	10%	9%	36%	54%
D	1%	1%	12%	14%

100%

*補題

<検証>の途中で、いくつかの法則を見つけたので、 「王様の勝ち」「王様の引き分け」の確率を数式化できれば、 より確証に近づくと考え、一般化に挑戦してみました。

< KW の一般化>

(i) $\star \dots \star (\star m m)$ のパターン数は $3 \cdot 2^n - 3$ KW

(例) 3個のとき

GC の重複順列は 2³

CPの 11 11

PG 0 11 11

この順列の中に

GGG、CCC、PPP が2個ずつ含まれて

いるので

総パターン数は

 $3 \cdot 2^3 - 1$

(ii) \star がk個のとき、 \star の配置パターン数は $_{n-1}C_k$

1	2	3	4	5		n
	K	•••	•••		K	*
	K	•••	•••	K	*	*
K			•	•		
IX	Κ	K	*			*
	Κ	*	•••			*
	*	•••	•••			*

★…GCPの内、1種または2種で構成される順列 (例) GCCG CCCC 等

よって、総パターン数は

$$_{n-1}C_1 (3 \cdot 2^1 - 3) + {}_{n-1}C_2 (3 \cdot 2^2 - 3) + {}_{n-1}C_3 (3 \cdot 2^3 - 3) + \dots + {}_{n-1}C_{n-1}(3 \cdot 2^{n-1} - 3)$$

$$= \left\{ {}_{n-1}C_0 (3 \cdot 2^0 - 3) + {}_{n-1}C_1 (3 \cdot 2^1 - 3) + {}_{n-1}C_2 (3 \cdot 2^2 - 3) + \dots + {}_{n-1}C_{n-1}(3 \cdot 2^{n-1} - 3) \right\} - {}_{n-1}C_0 (3 \cdot 2^0 - 3)$$

$$= \left\{ 3\left({}_{n-1}C_0 \cdot 2^0 + {}_{n-1}C_1 \cdot 2^1 + \dots + {}_{n-1}C_{n-1} \cdot 2^{n-1} \right) - 3\left({}_{n-1}C_0 + {}_{n-1}C_1 + \dots + {}_{n-1}C_{n-1} \right) \right\} - {}_{n-1}C_0 (3 \cdot 2^0 - 3)$$

ここで

$$(1+x)^{n-1} = {}_{n-1}C_0 \ x^0 + {}_{n-1}C_1 \ x^1 + \dots + {}_{n-1}C_{n-1}x^{n-1}$$

•x=2 を代入して

$$3^{n-1} = {}_{n-1}C_0 \cdot 2^0 + {}_{n-1}C_1 \cdot 2^1 + \dots + {}_{n-1}C_{n-1} \cdot 2^{n-1}$$

•x=1 を代入して

$$2^{n-1} = {}_{n-1}C_0 + {}_{n-1}C_1 + \dots + {}_{n-1}C_{n-1}$$

よって、

$$\left\{3\left(_{n-1}C_{0}\right.\cdot2^{0}+_{n-1}C_{1}\right.\cdot2^{1}+\cdots+_{n-1}C_{n-1}\cdot2^{n-1}\right)-3\left(_{n-1}C_{0}\right.+_{n-1}C_{1}\right.+\cdots+_{n-1}C_{n-1})\right\}-_{n-1}C_{0}\left(3\cdot2^{0}-3\right)$$

$$= 3 \cdot 3^{n-1} - 3 \cdot 2^{n-1}$$

$=3(3^{n-1}-2^{n-1})$

<KD の一般化>

- (i) K…Kのパターン数は 1
- (ii) $\square \cdots \square$ (\square がn 個) のパターン数は $3^n (3 \cdot 2^n 3)$

よって、総パターン数は

$$1+3^{n-1}-(3\cdot 2^{n-1}-3)=3^{n-1}-3\cdot 2^{n-1}+4$$

1	2	 n
K	K	 Κ
IX		

<KL (=TW) の一般化>

n人の時に、プレイヤー 1 が「K」を出す総パターン数は 5^{n-1} よって

$$5^{n-1} - (KW + KD) = 5^{n-1} - (3(3^{n-1} - 2^{n-1}) + 3^{n-1} - 3 \cdot 2^{n-1} + 4)$$
$$= 5^{n-1} - (4 \cdot 3^{n-1} - 6 \cdot 2^{n-1} + 4)$$
$$= 5^{n-1} - 4 \cdot 3^{n-1} + 6 \cdot 2^{n-1} - 4$$

以上の結果を利用し、確率表(10人まで)及びグラフを作成しました。 人数を増やすと、KWとTLの勝率の差が大きくなることが分かります。 また、KWは0%に、TWは20%に、それぞれ収束しそうな様子が見られます。

KWとTWの確率表

/	KW	TW
2	12%	4%
3	12%	7%
4	9%	10%
5	6%	13%
6	4%	15%
7	3%	17%
8	2%	18%
9	1%	19%
10	1%	19%

そこで、収束値についても調べてみました。

<KW の収束値>

$$\frac{3 \cdot (3^{n-1} - 2^{n-1})}{5^n} = \frac{3(3^{n-1} - 2^{n-1})}{5 \cdot 5^{n-1}} = \frac{3}{5} \left(\left(\frac{3}{5} \right)^{n-1} - \left(\frac{2}{5} \right)^{n-1} \right) \to 0 \qquad (n \to \infty)$$

<TW の収束値>

$$\frac{5^{n-1}-4\cdot 3^{n-1}+6\cdot 2^{n-1}-4}{5^n}=\frac{5^{n-1}-4\cdot 3^{n-1}+6\cdot 2^{n-1}-4}{5\cdot 5^{n-1}}=\frac{1}{5}-\frac{4}{5}\cdot \left(\frac{3}{5}\right)^{n-1}+\frac{6}{5}\cdot \left(\frac{2}{5}\right)^{n-1}-\frac{4}{5}\cdot \left(\frac{1}{5}\right)^{n-1}\to \frac{1}{5} \qquad (n\to\infty)$$

推測が正しいことが証明されました。

4. 感想と今後の課題

- ・自分たちが作ったじゃんけんを楽しむためには、人数が多すぎても少なすぎてもいけないということを 数値で実感できて、感動しました。
- ・今回は数学的確率の考え方で確率を計算しましたが、統計的確率で考えるとどうなるのか、探ってみたいです。
- 今回は実際にじゃんけんを行い検証するまでに至らなかったので、今後実験してみたいです。

5. その他、参考文献

• 「賭博黙示録カイジ®~⑫」(福本伸行 講談社) *オリジナルじゃんけん製作のため、「Eカード」を参考にした。

(2019.1.26 第108回 数学教育実践研究会 にて発表)