■■□ 数列の帰納的定義 □■■

- (1) 初項 (2) 前の項から、その次に続く項を定める規則 の2つを与えて数列を定めること。
 - (2)の規則を式で示したものを**漸化式**という。
- 【1】等差数列型: $a_{n+1}=a_n+d$ \rightarrow $a_{n+1}-a_n=d$ より公差 d の等差数列
- 例) $a_1 = 2$, $a_{n+1} = a_n 3$
- 例) $a_1 = 2$, $a_2 = 3$, $a_{n+2} a_n = 4$ のとき, $a_{40} = \boxed{}$
- 【2】等比数列型: $a_{n+1}=ra_n \rightarrow \frac{a_{n+1}}{a_n}=r$ より公比r の等比数列
- 例) $a_1 = -3$, $5a_{n+1} = 2a_n$
- 【3】変比数列型: $a_{n+1} = f(n)a_n \rightarrow n = 1, 2, 3, \cdots$ を代入して辺々かける
 - 例) $a_1 = 7$, $(n+2)a_{n+1} = na_n$

- 【4】階差数列型: $a_{n+1} = a_n + f(n) \rightarrow a_n = a_1 + \sum_{k=1}^{n-1} f(k) (n \ge 2) \ge n = 1$
- 例) $a_1 = 3$, $a_{n+1} = a_n + n$

(51) $a_1 = 3$, $a_{n+1} - a_n = 2^n$

- 【5】隣接2項間型①: $a_{n+1} = pa_n + q \rightarrow$ 特性方程式 x = px + q を解いて 等比数列を作る
- 例) $a_1 = 3$, $a_{n+1} = 4a_n + 3$

- $igg(igg(igg(ar{a} igg) igg)$ 指数型: $a_{\scriptscriptstyle n+1} = a_{\scriptscriptstyle n}^{\; k} \;
 ightarrow$ 両辺の対数をとって隣接2項間型①に
 - 例) $a_1 = 10$, $a_{n+1} = 10a_n^3$

●●○ 練習問題 ○●●

- (1) $a_1 = 1$, $a_{n+1} = a_n + 2$
- (2) $a_1 = -2$, $a_{n+1} = 2a_n$
- (3) $a_1 = 1$, $a_{n+1} = na_n$
- (4) $a_1 = 1$, $a_{n+1} = a_n + n^2$
- (5) $a_1 = 1$, $a_{n+1} = a_n + 2n + 1$
- (6) $a_1 = 1$, $a_{n+1} = 3a_n 1$
- (7) $a_1 = 2$, $3a_{n+1} = 2a_n + 1$

- 【7】隣接2項間型②: $a_{n+1}=pa_n+q^n \to$ 両辺を q^{n+1} でわって $\frac{a_n}{q_n}=b_n$ とおいて隣接2項間型①に
- 例) $a_1 = 1$, $a_{n+1} = 2a_n + 3^n$

- 【9】分数型①: $a_{n+1} = \frac{ra_n}{pa_n + q}$ → 両辺の逆数をとって $\frac{1}{a_n} = b_n$ とおく

- 【10】 S_n を含む漸化式型: $\rightarrow a_n = S_1, a_n = S_n S_{n-1} \ (n \ge 2)$ の利用
- 例) $a_1 = 1$, $a_{n+1} = S_n + (n+1)$ ただし $S_n = a_1 + a_2 + \dots + a_n$
- 【8】隣接2項間型③: $a_{n+1}=pa_n+qn+r$ →①階差数列 $b_n=a_{n+1}-a_n$ を ② $\{a_n + \alpha n + \beta\}$ の等比数列へ
- 例) $a_1 = 1$, $a_{n+1} = 2a_n 3n$ ①の解き方

- ●●○ 練習問題 ○●●
- (1) $a_1 = 2$, $a_{n+1} = 2a_n + 2^{n+1}$
- (3) $a_1 = 1$, $a_{n+1} = 2a_n + n 1$
- (2) $a_1 = 2$, $a_{n+1} = 2a_n + (-2)^n$ (4) $a_1 = 1$, $a_{n+1} = \frac{a_n}{2a_n + 3}$

②の解き方

- 【11】隣接3項間型①: $a_{n+2} + pa_{n+1} + qa_n = 0$ (重解をもたないタイプ)
- \rightarrow ① $x^2 + px + q = 0$ の2つの解を α, β としたときに

$$a_{n+2} - \alpha a_{n+1} = \beta \left(a_{n+1} - \alpha a_n \right)$$

$$a_{n+2}-eta a_{n+1}=lpha \left(a_{n+1}-eta a_n
ight)$$
 と変形して連立する

- ② $a_n = A\alpha^n + B\beta^n$ とおいて、 a_1, a_2 から A, B を求める
- $(\overline{\mathfrak{H}})$ $a_1 = 0$, $a_2 = 1$, $a_{n+2} 5a_{n+1} + 6a_n = 0$
 - ①の解き方

②の解き方

【12】隣接3項間型②: $a_{n+2} + pa_{n+1} + qa_n = 0$ (重解をもつタイプ)

$$\rightarrow a_{n+2} - \alpha a_{n+1} = \alpha (a_{n+1} - \alpha a_n)$$
 一本で解く

例)
$$a_1 = 1$$
, $a_2 = 4$, $a_{n+2} - 4a_{n+1} + 4a_n = 0$

- 【13】分数型②: $a_{{\scriptscriptstyle n+1}}=rac{ra_{{\scriptscriptstyle n}}+s}{pa_{{\scriptscriptstyle n}}+q}$ ightarrow うまく誘導にのるのがコツ
- 例) $a_1 = 2$, $a_{n+1} = \frac{a_n + 2}{2a_n + 1}$ に対して
 - (1) $b_n = \frac{a_n 1}{a_n + 1}$ とおくと、数列 $\{b_n\}$ は等比数列であることを示せ。
 - (2) 数列 $\{a_n\}$ の一般項を求めよ

●●○ 練習問題 ○●●

- (1) $a_1 = 1$, $a_2 = 2$, $a_{n+2} 4a_{n+1} + 3a_n = 0$
- (2) $a_1 = 1$, $a_2 = 6$, $a_n + 2a_{n-1} 3a_{n-2} = 0$ ($n \ge 3$) をみたすとき (i) a_n を a_{n-1} で表せ。 ($n \ge 2$)
 - (ii) 一般項 a_n を求めよ。
- (3) $a_1 = 4$, $a_{n+1} = \frac{4a_n 9}{a_n 2}$ で定められる数列 $\{a_n\}$ がある。
 - (i) すべてのn に対して、 $a_n \neq 3$ を示せ。
 - (ii) $b_n = \frac{1}{a_n 3}$ とおくとき、 $\{b_n\}, \{a_n\}$ の一般項を求めよ。
- (4) 数列 $\{a_n\}$ の初項から第n項までの和を S_n とするとき,

 $2a_n - S_n = 3^n (n = 1, 2, 3 \cdots)$ となる関係がある。一般項を求めよ。

◆◆◇ 演習問題 ◇◆◆

I. 数列 $\{a_n\}$ が次の関係式をみたすとき、一般項 a_n を求めよ。

(1)
$$a_1 = 1$$
, $a_{n+1} = 3a_n + 1$

(2)
$$a_0 = 1$$
, $a_n = \frac{a_{n-1}}{3 + a_{n-1}}$

(3)
$$a_1 = 10, \ \sqrt[3]{\frac{a_{n+1}}{10}} = a_n$$

(4)
$$a_1 = 1$$
, $a_{n+1} = 3a_n + n - 1$

(5)
$$a_1 = 1$$
, $a_{n+1} = 3a_n + (-2)^n$

(6)
$$x_1 = 1$$
, $x_2 = 5$, $x_{n+1} = 5x_n - 6x_{n-1}$

(7)
$$y_1 = 1$$
, $y_2 = \frac{1}{5}$, $y_n y_{n-1} = 5 y_{n+1} y_{n-1} - 6 y_{n+1} y_n$

(8)
$$a_1 = 1$$
, $a_{n+1} - a_n = 3n^2 - 4n$

2. 数列
$$\{a_n\}$$
 が、 $a_1 = \frac{1}{2}$, $\frac{a_n}{a_{n-1}} + \frac{2}{n+1} = 1$ $(n = 2, 3, 4 \cdots)$ をみたすとき、

$$S_n = a_1 + a_2 + \dots + a_n$$
 を求めよ。 (東京学芸大学)

3.
$$a_1=1,\ b_1=3,\ a_{n+1}=3a_n+b_n$$
 , $b_{n+1}=2a_n+4b_n$ で定められる $\left\{a_n\right\},\left\{b_n\right\}$ がある。

(1)
$$a_{n+1} + \alpha b_{n+1} = \beta (a_n + \alpha b_n)$$
をみたす α , β の組を 2 組求めよ。

(2) 数列
$$\{a_n\}$$
, $\{b_n\}$ の一般項を求めよ。 (三重大学)

4.
$$p \in 0$$
 でない実数とする。数列 a_1, a_2, a_3, \cdots を次のように定義する。

$$a_1 = 1$$
, $a_{n+1} = pa_n + p^{-1}$ $(n = 1, 2, \cdots)$

(1)
$$|p|=1$$
のとき、 a_n を求めよ。

(2)
$$|p| \neq 1$$
 のとき、 a_n を求めよ。 (北海道大学・改)