空間ベクトルの利用の確認

★ 平面と同様にベクトルを図形の問題に利用しよう!

1 図形の条件をベクトルの条件に

一直線上の3点(共線条件)

3 点 A, B, C が一直線上にある \leftrightarrow $\overrightarrow{AC} = k\overrightarrow{AB}$ となる実数 k がある(始点一致)

平行条件

 $AB // CD \Leftrightarrow \overline{AB} = k\overline{CD}$ となる実数 k がある

線分の長さ

 $AB^2 = \left| \overrightarrow{AB} \right|^2 = \overrightarrow{AB} \cdot \overrightarrow{AB}$

同じ平面上にある点

点 P が平面 ABC 上にある \Leftrightarrow $\overrightarrow{AP} = s\overrightarrow{AB} + t\overrightarrow{AC}$ (s, t) は実数) \Leftrightarrow $\overrightarrow{OP} = r\overrightarrow{OA} + s\overrightarrow{OB} + t\overrightarrow{OC}$, r + s + t = 1

なす角

 $\overrightarrow{AB} \cdot \overrightarrow{AC} = |\overrightarrow{AB}| |\overrightarrow{AC}| \cos \theta \qquad (0^{\circ} \le \theta \le 180^{\circ})$

垂直条件

 $AB \perp CD \Leftrightarrow \overrightarrow{AB} \cdot \overrightarrow{CD} = 0 \quad (\overrightarrow{AB} \neq \overrightarrow{0}, \overrightarrow{CD} \neq \overrightarrow{0})$

3直線が1点で交わる

 $\overrightarrow{OP} = \overrightarrow{OQ} = \overrightarrow{OR}$ なら $3 \land P, Q, R$ は一致 (分点の一致)

POINT

空間図形から平面図形を取り出そう

交点 ⇒ 2通りに表してベクトルの相等としてみる

垂直・角・線分 ⇒ 2乗するなどして内積の利用へ

2 結論に向けてベクトルの変形を

POINT

3本の単位ベクトル or 位置ベクトル

- ・(単位)始点が一致した3本の単位ベクトルを決めて他のベクトルを表す。
- ・(位置)計算が楽になるよう成分を定めて活用する。

3 ベクトルを図形化する

POINT

変形によって得られた結論を改めて図形として結論を出す