2次方程式の解と数の大小の確認

◇◆◇ 2次方程式の実数解の符号 ◇◆◇

2次方程式 $ax^2 + bx + c = 0$ の2つの解を α , β (α , β は実数), 判別式を $D = b^2 - 4ac$ とする.

- 1. $\alpha > 0 \ \beta > 0 \Leftrightarrow D \ge 0, \ \alpha + \beta > 0, \ \alpha\beta > 0$
- $2 \ . \quad \alpha < 0 \ \ \dot{\mathcal{D}} > \mathcal{O} \qquad \Leftrightarrow \qquad D \geqq 0 \ , \quad \alpha + \beta < 0 \ , \quad \alpha\beta > 0$
- 3. α と β が異符号 \Leftrightarrow D > 0, $\alpha\beta < 0$

$\Diamond \blacklozenge \Diamond$ 2次方程式の実数解と実数 k の大小 $\Diamond \blacklozenge \Diamond$

2次方程式 $ax^2 + bx + c = 0$ の2つの解を α , β (α , β は実数), 判別式を $D = b^2 - 4ac$ とする. また、 $f(x) = ax^2 + bx + c$ とする.

- 2次関数のグラフ利用(a>0)

- $\left. \begin{array}{ccc} \alpha < k \\ \beta < k \end{array} \right\} \qquad \Leftrightarrow \quad D \geqq 0 \; , \quad \left. \begin{array}{cccc} \left(\alpha k \right) + \left(\beta k \right) < 0 \\ \left(\alpha k \right) \left(\beta k \right) > 0 \end{array} \right. \qquad D \geqq 0 \; , \quad \left(\stackrel{\text{軸}}{\text{位置}} \right) < k \; , \quad f \left(k \right) > 0$
- 3. k が α と β の間 \Leftrightarrow $(\alpha k)(\beta k) < 0$

f(k) < 0

解説

$$\alpha < k \Leftrightarrow \alpha - k < 0$$

$$\alpha = k \Leftrightarrow \alpha - k = 0$$

$$\alpha > k \Leftrightarrow \alpha - k > 0$$

$$\beta < k \Leftrightarrow \beta - k < 0$$

$$\beta = k \Leftrightarrow \beta - k = 0$$

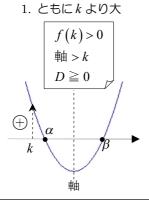
 α , β と k の大小関係は

 $\alpha - k$, $\beta - k$ 符号を調べる

実数解と実数 k の大小関係と2次関数のグラフ

 $\beta > k \iff \beta - k > 0$

2次関数 $f(x) = ax^2 + bx + c$ のグラフを使って実数解 α , β ($\alpha \le \beta$) と実数k の大小関係を 調べると、a>0 (下に凸) のとき下の図のようになる.



ともに k より小

