確認

相互関係式の求値問題の確認

★ 式の流れを考えながら確認しておこう

 $\Diamond \cos \theta$ が与えられたとき

例題) $\cos\theta = -\frac{1}{4}$ のとき、 $\sin\theta$ 、 $\tan\theta$ の値を求めよ。ただし、 $0^{\circ} \le \theta \le 180^{\circ}$ とする。

手順① 与えられた条件から、問題以外の三角比の符号を考える。(王道・邪道)

$$0^{\circ} \le \theta \le 180^{\circ}, \cos \theta = -\frac{1}{4} < 0 \text{ fsol}$$

 $\sin \theta > 0$, $\tan \theta < 0$

図を書いて確認を。

問題文で $\cos \theta$ が与えられているので、 求める $\sin \theta$, $\tan \theta$ の符号を考える。

王道 手順② $\sin^2\theta + \cos^2\theta = 1$ に問題で与えられた三角比の値を代入して計算する

 $\sin^2\theta + \cos^2\theta = 1$ に代入すると

$$\sin^2\theta + \left(-\frac{1}{4}\right)^2 = 1$$

$$\sin^2 \theta = 1 - \frac{1}{16} = \frac{15}{16}$$

$$\sin\theta = \pm \frac{\sqrt{15}}{4}$$

王道 手順③ 手順①で考えた符号を元に絞り込む

邪道 手順② 問題で与えられた三角比の値から 直角三角形をイメージする

$$\cos\theta = -\frac{1}{4} \, \xi \, \mathcal{V}$$

図のような

直角三角形を考える

三平方の定理により

$$x^2 + 1^2 = 4^2$$
, $x > 0$ to $x = \sqrt{15}$

邪道 手順③ 手順①で考えた符号を元に絞り込む

 $\sin\theta > 0 \approx 0 \approx \sin\theta = \frac{\sqrt{15}}{4}$

王道 手順④ $\tan \theta = \frac{\sin \theta}{\cos \theta}$ で残り1つを求める

$$\tan \theta = \frac{\sin \theta}{\cos \theta} \qquad \tan \theta = \frac{\sin \theta}{\cos \theta} = \sin \theta \div \cos \theta$$

$$= \frac{\frac{\sqrt{15}}{4}}{-\frac{1}{4}} \qquad = \frac{\sqrt{15}}{4} \div \left(-\frac{1}{4}\right)$$

$$= -\frac{\sqrt{15}}{1} \qquad = -\sqrt{15}$$

$$= -\sqrt{15}$$

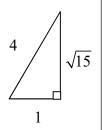
$$= -\sqrt{15}$$

 $\sin \theta > 0$, $\tan \theta < 0$ なので

直角三角形より

$$\sin\theta = \frac{\sqrt{15}}{4}$$

$$\tan\theta = -\frac{\sqrt{15}}{1} = -\sqrt{15}$$

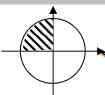


\Diamond $\tan \theta$ が与えられたとき

例題) $\tan \theta = -2$ のとき、 $\sin \theta$ 、 $\tan \theta$ の値を求めよ。ただし、 $0^{\circ} \le \theta \le 180^{\circ}$ とする。

手順① 与えられた条件から、問題以外の三角比の符号を考える。 (王道・邪道)

$$0^{\circ} \le \theta \le 180^{\circ}$$
, $\tan \theta = -2 < 0$ රූගල්
$$\sin \theta > 0, \cos \theta < 0$$



図を書いて確認を。 問題文で $\tan \theta$ が与えられているので、 求める $\sin \theta$, $\cos \theta$ の符号を考える。

王道 手順② $1 + \tan^2 \theta = \frac{1}{\cos^2 \theta}$ に問題で与え

られたの値を代入して計算する

$$1 + (-2)^2 = \frac{1}{\cos^2 \theta} \quad \text{LF} \qquad \frac{5}{1} = \frac{1}{\cos^2 \theta}$$
$$\cos^2 \theta = \frac{1}{5}$$

$$\cos\theta = \pm\sqrt{\frac{1}{5}} = \pm\frac{1}{\sqrt{5}}$$

邪道 手順② 問題で与えられた三角比の値から 直角三角形をイメージする

$$\tan\theta = -2 = -\frac{2}{1} \, \text{LV}$$

図のような

直角三角形を考える

三平方の定理により

$$x^2 = 2^2 + 1^2$$
, $x > 0$ too $x = \sqrt{5}$

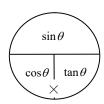
王道 手順③ 手順①で考えた符号を元に絞り込む

$\cos \theta < 0$ \$ $\cos \theta = -\frac{1}{\sqrt{5}}$

邪道 手順③ 手順①で考えた符号を元に絞り込む

王道 手順④ $\tan \theta = \frac{\sin \theta}{\cos \theta}$ で残り1つを求める

$$\sin \theta = \cos \theta \times \tan \theta$$
$$= -\frac{1}{\sqrt{5}} \times \frac{-2}{1}$$
$$= \frac{2}{\sqrt{5}}$$

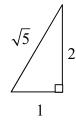


 $\sin \theta > 0$, $\tan \theta < 0$ なので

直角三角形より

$$\sin\theta = \frac{2}{\sqrt{5}}$$

$$\cos\theta = -\frac{1}{\sqrt{5}}$$

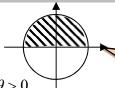


\Diamond $\sin\theta$ が与えられたとき

例題) $\sin\theta = \frac{5}{13}$ のとき, $\cos\theta$, $\tan\theta$ の値を求めよ。ただし, $0^\circ \le \theta \le 180^\circ$ とする。

手順① 与えられた条件から、問題以外の三角比の符号を考える。 (王道・邪道)

$$0^{\circ} \le \theta \le 180^{\circ}$$
, $\sin \theta = \frac{5}{13} > 0$ なので



図を書いて確認を。

問題文で $\sin\theta$ が与えられているので、 求める $\cos\theta$, $\tan\theta$ の符号を考える。

 $0^{\circ} < \theta < 90^{\circ}$ (鋭角) のとき $\cos \theta > 0$, $\tan \theta > 0$

 $90^{\circ} < \theta < 180^{\circ}$ (鈍角) のとき $\cos \theta < 0$, $\tan \theta < 0$

王道 手順② $\sin^2\theta + \cos^2\theta = 1$ に問題で与えられた三角比の値を代入して計算する

$$\left(\frac{5}{13}\right)^2 + \cos^2 \theta = 1 \iff \cos^2 \theta = 1 - \frac{25}{169}$$
$$\cos^2 \theta = \frac{169}{169} - \frac{25}{169} = \frac{144}{169}$$
$$\cos \theta = \pm \frac{12}{13}$$

邪道 手順② 問題で与えられた三角比の値から 直角三角形をイメージする

$$x^2 + 5^2 = 13^2$$
, $x > 0$ 750 $x = 12$

王道 手順③ 手順①で考えた符号を元に絞り込む

王道 手順④ $\tan \theta = \frac{\sin \theta}{\cos \theta}$ で残り1つを求める

$0^{\circ} < \theta < 90^{\circ}$ (鋭角)のとき

$$\cos \theta > 0$$
 For $\cos \theta = \frac{12}{13}$

$$\tan \theta = \frac{\sin \theta}{\cos \theta} = \sin \theta \div \cos \theta = \frac{5}{13} \div \frac{12}{13} = \frac{5}{12}$$

$90^{\circ} < \theta < 180^{\circ}$ (鈍角) のとき

$$\cos \theta < 0$$
 two $\cos \theta = -\frac{12}{13}$

$$\tan \theta = \frac{\sin \theta}{\cos \theta} = \sin \theta \div \cos \theta = \frac{5}{13} \div \left(-\frac{12}{13}\right) = -\frac{5}{12}$$

邪道 手順③ 手順①で考えた符号を元に絞り込む

 $0^{\circ} < \theta < 90^{\circ}$ (鋭角) のとき $\cos \theta > 0$, $\tan \theta > 0$ なので $\cos \theta = \frac{12}{13}$, $\tan \theta = \frac{5}{12}$

$$90^{\circ} < \theta < 180^{\circ}$$
 (鈍角) のとき $\cos \theta < 0$, $\tan \theta < 0$ なので $\cos \theta = -\frac{12}{13}$, $\tan \theta = -\frac{5}{12}$