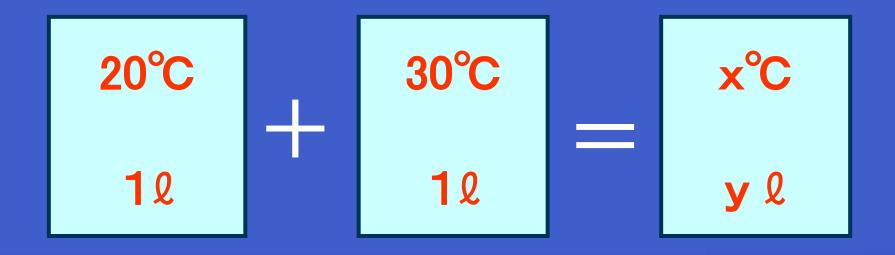
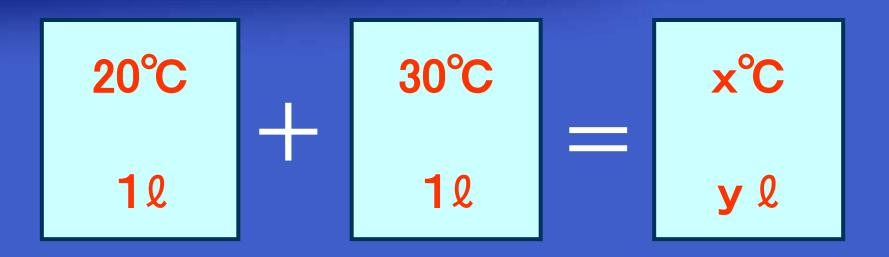
20°Cの水と30°Cの水を足すと 50°Cの水にならないのはなぜか?

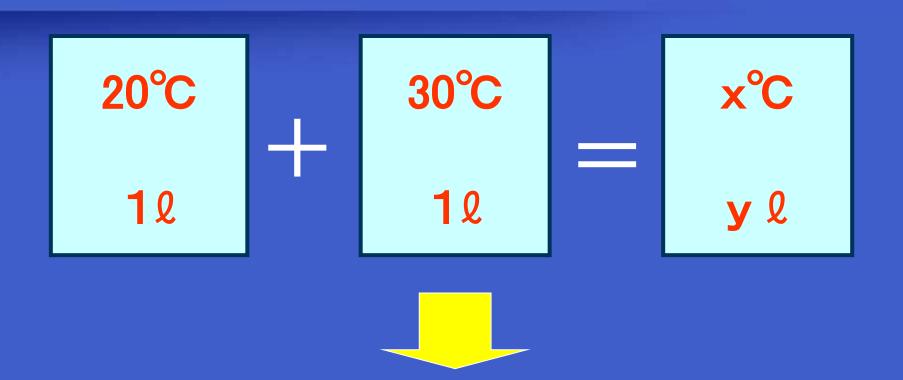

北海道小樽桜陽高等学校 若 林 理一郎

考えるきっかけ


- 1 大学生の頃、「20°Cの水+30°Cの水」は、「50°C の水」にならないのは、なぜか考えていたから。
- 2 昨年、たまたま隣席だった数学科のS先生(大学のゼミの大先輩)と雑談をしていたときにこの話をして、ちょっと時間があったので、物理のW先生に教えてもらいながら公式化してみた。

まずは問題!!

Q 20°Cの水1lと30°Cの水1lを足すと、x°Cの水ylになる。x,yを求めよ。



考えてみよう!!

- ①質量保存の法則により、y=10 +10=20
- ② 質量が等しいことから、温度は中間になると予想されるので x = 25°C と<u>直観的には</u>答えられる。

$(20^{\circ}C) + (30^{\circ}C) = (25^{\circ}C) なのか?$

「熱量・比熱・熱容量」の関係から、 示すことができる。

熱量・比熱・熱容量の関係

比熱c[cal/g·k]、質量m[g]で、 物体の温度をt[k]だけ変化させるのに 必要な(失う)熱量Q[cal/k]は、

Q = mct

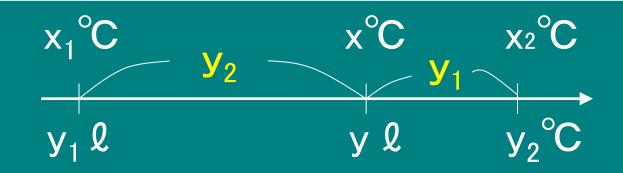
である。

熱量保存の法則

比熱及び質量は等しく、 Aが得る熱量とBが失う熱量Qは 熱量保存の法則により等しいので、 x-20=30-x ∴ x=25 従って、AとBを混ぜると25℃になる。

一般化への道

Q x_1 °C の水 y_1 l l x_2 °C の水 y_2 l を足す l x°C の水になる。x を求めよ。


関係を調べると…

熱量保存の法則により

$$(x-x_1)y_1 = (x_2-x)y_2$$
 $x = \frac{x_1y_1 + x_2y_2}{y_1 + y_2}$

温度の図示化

Q 先の結果を数直線で図示すると?

→ xは、線分x₁x₂を質量比(y₂:y₁)によって 内分する点の座標になっている。

$$x = \frac{x_1 y_1 + x_2 y_2}{y_1 + y_2}$$

ベクトルの演算として

Q 先の結果を演算として定義すると?

$$x_1, x_2 \in ($$
 温度 $)$ で $y_1, y_2 \in ($ 質量 $)$ とする。 $\vec{a} = (x_1, y_1), \ \vec{b} = (x_2, y_2)$ とするとき、

$$\vec{a} \oplus \vec{b} = rac{x_1 y_1 + x_2 y_2}{y_1 + y_2}$$

として、(温度,質量)の加法を定義すると良い。

参考ホームページ

岡野研究室(日本大学理工学部機械工学科)

http://www.mech.cst.nihon-u.ac.jp/studies/okano/studies/phys/buturi7.2.html

天才児ネット

http://www.tensaiji.net/