因果関係を確率によって記述する

原因の確率からベイジアン・ネットワークへ

AIはどのようにして意思決定をするのか

AI (人工知能) というフレーズを耳にすることが多い。IBM「ワトソン」、NEC「the Wise」、Sony「Neural Network Console」等のAI ソフトも普及して、予想外の因果関係が発見されて、医学や社会に影響を与えている。その基本的な数学理念は、ベイズの定理である。

松本睦郎(札幌啓成高等学校 講師)

Episode1 原因の確率

【例題1】早稲田大学入試問題

5回に1回の割合で帽子を忘れるくせのある K 君が、正月に、A, B, C の 3 軒をこの順番に年始まわりをして自宅に帰ったとき、帽子を忘れてきたことに気が付いた。 2 番目の B 宅に忘れてきた確率を求めよ。「解答例」

「帽子を忘れた」(結果) が時間的に先行する「A 宅, B 宅, C 宅」(原因) の確率を求める問題です。

X:3軒のどこかに帽子を忘れる事象

X::帽子を忘れない事象

$$P(\overline{X}) = \left(\frac{4}{5}\right)^3, P(X) = 1 - \left(\frac{4}{5}\right)^3 = \frac{61}{125}$$

 $\lceil B$ で忘れる」 $\Leftrightarrow \lceil A$ で忘れない」 $\times \lceil B$ で忘れる」

$$P(B \cap X) = \frac{4}{5} \times \frac{1}{5} = \frac{4}{25}$$

$$P(B|X) = \frac{P(B \cap X)}{P(X)} = \frac{20}{61} \cdot \cdot \cdot (\stackrel{\triangle}{=})$$

(有向非巡回グラフ↑)

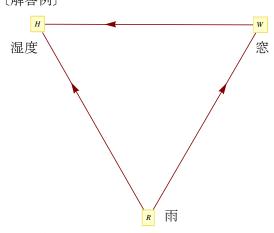
Episode 2 ベイズの定理

【例題2】天気予報問題

雨が降る確率 0.4、雨が降らない確率 0.6 雨が降る時、窓を閉める確率 0.7 雨が降る時、窓を閉めない確率 0.3 雨が降らないとき窓を閉める確率 0.05 雨が降らないとき窓を閉めない確率 0.95 観測結果(確率)

雨	窓	低湿度	高湿度
降る	閉める	0.1	0.9
降らない	閉める	0.2	0.8
降る	閉めない	0.35	0.65
	閉めない	0.99	0.01

このとき、湿度が高いときの雨の降る確率? [解答例]



R:雨が降る事象、W:窓を閉める事象

H:湿度が上がる事象

T:成立 True F:不成立 False

P(W|R)

1 (11 111)				
W:窓	窓閉	窓開		
R:雨	WT	WF		
雨降る	0.7	0.3		
RT 0.4	0.7	0.5		
雨降らない	0.05	0.05		
RF 0.6	0.05	0.95		

P(H|W,R)

北海道大学理学部 5 号館 203 号室

窓,雨 (W,R)	高湿度 HT	低湿度 HF
Т&Т	0.9	0.1
T&F	0.8	0.2
F&T	0.65	0.35
F&F	0.01	0.99

$$P(雨|高湿度) = P(RT|HT)$$
$$= \frac{P(R \cap H)}{P(HT)} = \frac{P(HT|RT)P(RT)}{P(HT)}$$

 $=\frac{0.9\times0.7\times0.4+0.65\times0.3\times0.4}{0.9\times0.7\times0.4+0.8\times0.05\times0.6+0.65\times0.3\times0.4+0.01\times0.6\times0.95}$

Episode 3 ベイジアン・ネットワークへ

【例題3】医学的意思判断決定問題(単純な問題)

「A:カゼ」から「B:ノド痛」を引き起こし、「B:ノド痛」から「C:声異常」をもたらすものとする。 声異常のあるときのカゼである確率を求める。

観測結果 (確率)

[解答例]

T: True F: False

「カゼ」	1/10
「カゼ」から「ノド痛」へ	$^{3}/_{5}$
「カゼでない」から「ノド痛」へ	¹ / ₅
「ノド痛」から「声異常」へ	$^{2}/_{3}$
「ノド痛でない」から「声異常」へ	1/4

$$P(AT) = \frac{1}{10}, P(AF) = \frac{9}{10}$$

$$P(BT|AT) = \frac{3}{5}, P(BT|AF) = \frac{1}{5}$$

$$\frac{P(BT \cap AT)}{P(AT)} = \frac{3}{5}, \frac{P(BT \cap AF)}{P(AF)} = \frac{1}{5}$$

$$\therefore P(BT \cap AT) = \frac{3}{5} \times \frac{1}{10}, P(BT \cap AF) = \frac{1}{5} \times \frac{9}{10}$$

$$P(CT|BT) = \frac{2}{3}, P(CT|BF) = \frac{1}{4}$$

$$\frac{P(BT \cap CT)}{P(BT)} = \frac{2}{3}, \frac{P(BF \cap CT)}{P(BF)} = \frac{1}{4}$$

$$\therefore P(BT \cap CT) = \frac{2}{3}P(BT), P(BF \cap CT) = \frac{1}{4}P(BF)$$

声異常のあるときのカゼである確率は、

$$P(AT|CT) = \frac{P(AT \cap CT)}{P(CT)} \cdots (*)$$

$$P(CT) = P(BT \cap CT) + P(BF \cap CT)$$

$$= \frac{2}{3}P(BT) + \frac{1}{4}P(BF) \cdots ①$$

$$P(BT) = P(BT \cap AT) + P(BT \cap AF) = \frac{3+9}{50} = \frac{12}{50}$$

$$P(BF) = 1 - P(BT) = 1 - \frac{12}{50} = \frac{38}{50}$$
① 上 $9P(CT) = \frac{2}{3} \times \frac{12}{50} + \frac{1}{4} \times \frac{38}{50} = \frac{7}{20} \cdots ②$

$$P(CT|AT) = \frac{P(CT \cap AT)}{P(AT)}$$

$$= P(BT|AT) \times P(CT|BT) + P(BF|AT) \times P(CT|BF)$$
$$= \frac{3}{5} \times \frac{2}{3} + \frac{2}{5} \times \frac{1}{4}$$

$$\frac{P(CT \cap AT)}{P(AT)} = \frac{3}{5} \times \frac{2}{3} + \frac{2}{5} \times \frac{1}{4}$$

	ВТ	BF
$AT: \frac{1}{10}$	3 5	2 5
$AF: \frac{9}{10}$	1 5	$\frac{4}{5}$

	СТ	CF
ВТ	<u>2</u> 3	$\frac{1}{3}$
BF	$\frac{1}{4}$	$\frac{3}{4}$

$$P(AT \cap CT) = P(AT) \times \left(\frac{2}{5} + \frac{1}{10}\right) = \frac{1}{20}$$

(*) ②より

$$P(AT|CT) = \frac{P(AT \cap CT)}{P(CT)} = \frac{\frac{1}{20}}{\frac{7}{20}} = \frac{1}{7}$$

「声に異常がある」とき、「カゼ」が原因である確率 は、14.3%である。

【例題4】医学的意思判断決定問題(複雑な問題)

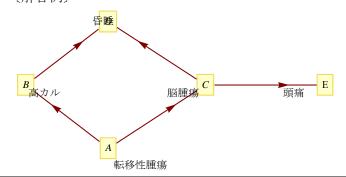
「A:転移性腫瘍」は脳に転移して「C:脳腫瘍」になりあるいは、「B:高カルシウム血症」から「D:昏睡」を引き起こすことがある。また「C:脳腫瘍」は「E:激しい頭痛」をもたらす。ある受診者は、「D:昏睡」はないが「E:激しい頭痛」があるとき「A:転移性腫瘍」があるか?昏睡はないが激しい頭痛のとき、転移性腫瘍の確率を求める。

観測結果 (確率)

「転移性腫瘍」	0.1
「転移性腫瘍」から「高カルシウム血症」へ	0.8
「転移性腫瘍でない」から「高カルシウム血症」へ	0.1
「転移性腫瘍」から「脳腫瘍」へ	0.3
「転移性腫瘍でない」から「脳腫瘍」へ	0.2
「高カルシウム血症」かつ「脳腫瘍」から「昏睡」へ	0.6
「高カルシウム血症でない」かつ「脳腫瘍」から「昏睡」	~ 0.5
「高カルシウム血症」かつ「脳腫瘍でない」から「昏睡」	~ 0.4
「高カルシウム血症でない」かつ「脳腫瘍でない」から	「昏睡」
^	0.2
「脳腫瘍」から「頭痛」へ	0.9
「脳腫瘍でない」から「頭痛」へ	0.7

T: True F: False

これらの確率はBig Data より求められたものとする。 [解答例]



	$B \cap C$	$\overline{B} \cap C$	$B \cap \overline{C}$	$\overline{B} \cap \overline{C}$
	(BT)&(CT)	(BF)&(CT)	(BT)&(CF)	(BF)&(CF)
AT	0.8×0.3	0.2×0.3	0.8×0.7	0.2×0.7
0.1	0.24	0.06	0.56	0.14
AF	0.1×0.2	0.9×0.2	0.1×0.8	0.9×0.8
0.9	0.02	0.18	0.08	0.72

	$B \cap C$	$\overline{B} \cap C$	$B \cap \overline{C}$	$\overline{B} \cap \overline{C}$
	(BT)&(CT)	(BF)&(CT)	(BT)&(CF)	(BF)&(CF)
DF	1 - 0.6	1 - 0.5	1 - 0.4	1 - 0.2
	0.4	0.5	0.6	0.8
ET	0.9	0.9	0.7	0.7
DF&ET	0.4×0.9	0.5×0.9	0.6×0.7	0.8×0.7
	0.36	0.45	0.42	0.56

「昏睡はないが頭痛がある」とき「転移性腫瘍」の確率を求める。

$$P(AT|DF\&ET) = \frac{P(A \cap \overline{D} \cap E)}{P(\overline{D} \cap E)}$$

ベイズの定理より

$$P(B \cap C) = P(B \cap C|A)P(A) + P(B \cap C|\overline{A})P(\overline{A})$$

$$= 0.24 \times 0.1 + 0.02 \times 0.9 = 0.042$$

$$P(\overline{B} \cap C) = P(\overline{B} \cap C|A)P(A) + P(\overline{B} \cap C|\overline{A})P(\overline{A})$$

$$= 0.06 \times 0.1 + 0.18 \times 0.9 = 0.168$$

$$P(B \cap \overline{C}) = P(B \cap \overline{C}|A)P(A) + P(B \cap \overline{C}|\overline{A})P(\overline{A})$$

$$= 0.56 \times 0.1 + 0.08 \times 0.9 = 0.128$$

$$P(\overline{B} \cap \overline{C}) = P(\overline{B} \cap \overline{C}|A)P(A) + P(\overline{B} \cap \overline{C}|\overline{A})P(\overline{A})$$

$$= 0.14 \times 0.1 + 0.72 \times 0.9 = 0.662$$

分母の $P(\overline{D} \cap E)$ を求める。

$$P(\overline{D} \cap E)$$

$$= P(\overline{D} \cap E | B \cap C) P(B \cap C)$$

$$+ P(\overline{D} \cap E | \overline{B} \cap C) P(\overline{B} \cap C)$$

$$+ P(\overline{D} \cap E | B \cap \overline{C}) P(B \cap \overline{C})$$

$$+ P(\overline{D} \cap E | \overline{B} \cap \overline{C}) P(\overline{B} \cap \overline{C})$$

$$= 0.36 \times 0.042 + 0.45 \times 0.168 + 0.42 \times 0.128$$

分子の $P(A \cap \overline{D} \cap E)$ を求める。

表 AT の部分

$$P(B \cap C) = P(B \cap C|A)P(A) = 0.24 \times 0.1 = 0.024$$

$$P(\overline{B} \cap C) = P(\overline{B} \cap C|A)P(A) = 0.06 \times 0.1 = 0.006$$

$$P(B \cap \overline{C}) = P(B \cap \overline{C}|A)P(A) = 0.56 \times 0.1 = 0.056$$

$$P(\overline{B} \cap \overline{C}) = P(\overline{B} \cap \overline{C}|A)P(A) = 0.14 \times 0.1 = 0.014$$

 $+0.56 \times 0.662 = 0.5152$

北数教 第109回数学教育実践研究会 令和元年6月1日(土)

北海道大学理学部 5 号館 203 号室

$$P(\overline{D} \cap E) = P(\overline{D} \cap E | B \cap C)P(B \cap C)$$

$$+P(\overline{D} \cap E | \overline{B} \cap C)P(\overline{B} \cap C)$$

$$+P(\overline{D} \cap E | B \cap \overline{C})P(B \cap \overline{C})$$

$$+P(\overline{D} \cap E | \overline{B} \cap \overline{C})P(\overline{B} \cap \overline{C})$$

$$= 0.36 \times 0.024 + 0.45 \times 0.006 + 0.42 \times 0.056$$

$$+0.56 \times 0.00784 = 0.0427$$

$$P(AT|DF\&ET) = \frac{P(A \cap \overline{D} \cap E)}{P(\overline{D} \cap E)} = \frac{0.0427}{0.512} = 0.0833984$$

「昏睡はないが頭痛がある」とき「転移性腫瘍」の確 率は、8.33%となる。

Episode 4 病名のベイズ診断

「原因」「結果」の因果関係を「病名」「症状」として 扱うと、ベイズの定理を活用して病名診断に活用する こともできる。

病名を D1,D2、症状を S1,S2,S3 とする。 3 症状から ベイズ診断をおこなう。ただし架空の診断である。

D1:肺気腫、D2:肺炎

S1:息苦しい。S2:せき込んで黄色のタンがでる。

S3:胸が苦しい。

	$P(S_J Di)$			
Di	P(Di)	S1	S2	S3
D1	0.23	0.10	0.70	0.60
$\overline{\mathrm{D2}}$	0.77	0.80	0.20	0.50

症状(S1,S2,S3)の状態が(1,0,1)のとき、D1の確 率は、ベイズの定理より

P(D1|1,0,1)

$$= \frac{0.23 \times 0.1 \times (1 - 0.7) \times 0.6}{0.23 \times 0.1 \times (1 - 0.7) \times 0.6 + 0.77 \times 0.8 \times (1 - 0.2) \times 0.5}$$
$$= 0.01652$$

Episode 5 原子力潜水艦スコーピオン捜索

1968年米国の原 子力潜水艦スコー ピオンが大西洋で 行方不明になった 事件があった。

沈没したとみられる潜水艦を発見するのに、ベイズの

定理を用いた捜索方法を用いた。海図上を分割し沈没 しているとみられる事前確率を経験から推定する。 その海域に沈没している事前確率をpとする。 沈没しているという条件下で、発見する確率をqとす る。

A:沈没している事象。B:発見する事象。

$$P(A) = p, P(B|A) = q, P(\bar{B}|A) = 1 - q$$

 $P(\bar{A}) = 1 - p, P(B|\bar{A}) = 0, P(\bar{B}|\bar{A}) = 1$

沈没していない海域では、発見する確率は0であり、 沈没していない海域で、発見されない確率は1である。 その海域で、発見されないとき沈んでいる確率 $P(A|\bar{B})$ を求める。

$$P(\bar{B}) = P(A \cap \bar{B}) + P(\bar{A} \cap \bar{B}) = p(1-q) + 1 - p$$
① の分母へ代入

$$P(A|\bar{B}) = \frac{P(A \cap \bar{B})}{P(\bar{B})} = \frac{p(1-q)}{p(1-q) + 1 - p}$$

指定された海域で、発見されないときに、沈没してい る確率になる。

(おわり)

【引用図書】

「入門ベイズ統計」松原望著

https://ja.wikipedia.org/wiki

北数教 第 109 回数学教育実践研究会 令和元年 6 月 1 日 (土) 北海道大学理学部 5 号館 203 号室