\documentclass{jarticle} 
\usepackage{amsmath,amssymb,ascmac,emathP,emathE} 
\newcounter{toi} \newcounter{subtoi}[toi] 
\newcounter{subsubtoi}[subtoi] 
\def\toi{\refstepcounter{toi}
         
\makebox[2zw][r]{\fbox{\Large\arabic{toi}}\hspace{1zw}}\hangindent=1zw} 
\def\subtoi{\refstepcounter{subtoi} 
\makebox[3.4zw][r]{(\arabic{subtoi})\hspace{1zw}}\hangindent=2.4zw} 
\def\arraystretch{2.05} 
\pagestyle{empty} 
\textwidth=18cm 
\textheight=25cm 
\oddsidemargin=-1.2cm  
\topmargin=-1.2cm 
\begin{document} 
\lineskiplimit=2.0ex  
\normallineskiplimit=\lineskiplimit 
\lineskip=\lineskiplimit 
\normallineskip=\lineskiplimit 
\hskip2zw {\LARGE 数学Q  一学期末考査} \quad  
\hskip2zw  \hfill  
\underline{\hskip1zw 年 \hskip2zw 組 \hskip2zw 番 \hskip3zw 氏名 \hskip30ex}  
\vspace*{2ex} 
                               
\begin{minipage}[t]{90mm} 
\toi (1)〜(4)の式を計算せよ.また、(5)の問に答えよ. 
\subtoi $\left ( -\bunsuu{x^2}{2y} \right )^5 \div \left ( \dfrac{1}{4}x^5 \div y^3 \right )^2$ 
\subtoi $(a-b+c-d)(a+b-c-d)$ 
\subtoi $(a+b+c)^2-(b+c-a)^2+(c+a-b)^2-(a+b-c)^2$ 
\subtoi $(x+3)(x+2)(x-2)(x-1)$ 
\subtoi $x^3+ax+b$ が $x^2+1$ で割り切れるように,定数 $a,\ \ b$ の値を定めよ. 
\vspace{5mm} 
\toi 次の式を計算せよ. 
\subtoi $\bunsuu{1}{x}-\bunsuu{2}{x^2-1}+\bunsuu{1}{x^2-x}$ 
\subtoi $\bunsuu{1}{a-\bunsuu{a^2-1}{a+\bunsuu{1}{a-1}}}$ 
\vspace{5mm} 
\toi 次の式を計算して、簡単にせよ. 
\subtoi $\bunsuu{1}{1+\sqrt{2}+\sqrt{5}}$ 
\subtoi $\bunsuu{2-\sqrt{3}}{2+\sqrt{3}}+\bunsuu{\sqrt{3}+1}{\sqrt{3}-1}$  
\subtoi $\bunsuu{1}{\sqrt{4-\sqrt{12}}}+\bunsuu{2}{\sqrt{4+\sqrt{12}}}$ 
\vspace{5mm} 
\toi 次の斜線部分で表される領域を不等式を用いて表せ。ただし、境界は含まない。 
\begin{edaenumerate}[(1)] 
\item % 
{\unitlength1cm\small 
\begin{zahyou}<(0,-3pt)[tl]><(0,0)[rt]><(2pt,-3pt)[rt]>(-2,2)(-2,2)% 
\zahyouMemori% 
\def\O{(0,0)}% 
\def\A{(-1.8,-1.8)}% 
\def\B{(1.8,-1.8)}% 
\def\C{(1.8,1.8)}% 
\ougigata*[0]{1}{-135}{45}% 
\Put\O{% 
\ougigata**{1}{45}{225}}% 
\Nuritubusi*{\A\B\C\A}% 
\ougigata*[0]{1}{-135}{45}% 
\Gurafu{1,0}\xmin\xmax% 
\En\O{1}% 
\Put\O{\makebox(0.1,-0.4)[l]{ O}}% 
\drawline(0,0)(1,0)% 
\drawline(0,0)(0,-1)% 
\Put{(0.8,1.6)}{$y=x$}% 
\end{zahyou}} 
\item% 
{\unitlength1cm\small 
\begin{zahyou}(-2,2)(-1,3)% 
\zahyouMemori% 
\def\Fx{1,0,0}% 
\Nuri*\Fx{-0.62}{1.62}% 
\Gurafu\Fx\xmin\xmax% 
\Gurafu{1,1}\xmin\xmax% 
\Put{(0.8,2.8)}{$y=x^2$}% 
\end{zahyou}} 
\end{edaenumerate} 
\end{minipage} 
\hspace{5mm} 
\begin{minipage}[t]{75mm} 
\vspace{-5mm} 
{\bf 解答欄} 
\vspace{-5mm} 
\begin{center} 
\begin{tabular}{|c|c|l|}\hline 
&(1)&                  \\\cline{2-3} 
&(2)& \\\cline{2-3} 
1&(3)& \\\cline{2-3} 
&(4)& \\\cline{2-3} 
&(5)& $a=$     $b=$     \\\hline 
\end{tabular} 
\def\arraystretch{3.7} 
\begin{tabular}{|c|c|l|}\hline  
\smash{\raisebox{-3zh}{2}}&(1)&                 \\\cline{2-3} 
&(2)&   \\\hline 
\end{tabular} 
\def\arraystretch{3.0} 
\begin{tabular}{|c|c|l|}\hline 
&(1)&                \\\cline{2-3} 
3&(2)& \\\cline{2-3} 
&(3)& \\\hline 
\end{tabular} 
\def\arraystretch{5.5} 
\begin{tabular}{|c|c|l|}\hline  
\smash{\raisebox{-4zh}{4}}&(1)&                 \\\cline{2-3} 
&(2)&   \\\hline 
\end{tabular} 
\end{center} 
\end{minipage} 
\end{document}
  |